Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074215    DOI: 10.1088/1674-1056/ade387
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Self-organized phase-locking of a mixed-resonant cavity diode laser array enabled by on-chip Talbot effect

Jun Qi(齐军)1,2, Tian Lan(兰天)1,2,†, Jing-Hao Zhang(张敬昊)1,2, Ying Li(李颖)3, Yi-Wen Lou(楼亦文)1,2, Feng-Jiao Qin(覃凤姣)1,2, Yu-Ying Liu(刘豫颖)1,2, and Zhi-Yong Wang(王智勇)1,2,‡
1 Institute of Advanced Technology on Semiconductor Optics & Electronics, Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China;
2 Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology), Ministry of Education, Beijing 100124, China;
3 Beijing Institute of Radio Metrology and Measurement, Beijing 100124, China
Abstract  To address the challenge of achieving stable in-phase coherent optical field in high-power laser arrays, we propose a novel dual Talbot diffraction coupling method that combines the on-chip self-injection effect with a mixed-resonant cavity diode laser array (MDLA). The designed MDLA incorporates two types of resonant cavities and an integrated external fractional Talbot cavity to compensate for in-phase mode phase delays. Numerical simulations demonstrate that the near-field optical pattern can be self-imaged via self-organized phase-locking, while the far-field optical pattern of in-phase mode can be coherently enhanced and modulated to exhibit a single-lobe pattern successfully. Furthermore, this method could inherently provide strong optical coupling and overcome the limited scalability of the weakly-coupled laser arrays. Ultimately, by leveraging self-organized phase-locking and Talbot-induced mode discrimination, our approach offers a robust platform for realizing high-power coherent laser sources with scalable integration potential.
Keywords:  mixed-resonant cavity      Talbot effect      self-injection effect      in-phase-locking  
Received:  27 March 2025      Revised:  28 May 2025      Accepted manuscript online:  11 June 2025
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.Tv (Photonic crystal lasers and coherent effects)  
  42.55.Ah (General laser theory)  
  85.30.-z (Semiconductor devices)  
Fund: This research was funded by the Science and Technology Commission Foundation of the Central Military Commission (Grant No. 2023-JCJQ-JJ-1008).
Corresponding Authors:  Tian Lan, Zhi-Yong Wang     E-mail:  lantian9094@bjut.edu.cn;zywang@bjut.edu.cn

Cite this article: 

Jun Qi(齐军), Tian Lan(兰天), Jing-Hao Zhang(张敬昊), Ying Li(李颖), Yi-Wen Lou(楼亦文), Feng-Jiao Qin(覃凤姣), Yu-Ying Liu(刘豫颖), and Zhi-Yong Wang(王智勇) Self-organized phase-locking of a mixed-resonant cavity diode laser array enabled by on-chip Talbot effect 2025 Chin. Phys. B 34 074215

[1] Zhang Y S, Xu Y F, Zheng J L, Li L Y, Fang T and Chen X F 2023 Chin. Phys. B 32 094204
[2] Gen P F, Chen M, An X Y, LiuWY, Zhu X Z, Li J L, Li B Y and Sheng Z M 2023 Chin. Phys. B 32 044101
[3] Zhang G B, Liu S, Zou D B, Cui Y, Liu J P, Yang X H, Ma Y Y and Shao F Q 2023 Chin. Phys. B 32 095202
[4] Etemadi A, Khajehmougahi K, Solimei L, Benedicenti S and Chiniforush N 2024 Appl. Sci. 14 847
[5] Xu H, Li Z Q, Pang C, Li R, Li G L, Akhmadaliev S, Zhou S Q, Lu Q M, Jia Y C and Chen F 2022 Chin. Phys. B 31 094209
[6] BaiWC, QinWZ, Tang D, Ji F M, Chen H S, Yang F, Qiao Z Q, Duan T, Lin D, He R, Zhu W K and Wang L 2021 Opt. Laser Technol. 139 106989
[7] Zhang W Q, Liu W Z, Wang J W, Cao P, Chen J X, Ting F, Zhou X Y and Zheng W H 2022 Opt. Lett. 47 5012
[8] Adams M, Holly C, Rauch S, Traub M, Hoffmann H and Haefner C 2024 Opt. Express 32 6446
[9] Evered C, Li K and Fan Y L 2024 Opt. Lett. 49 3524
[10] Yuan M Y, Wang W Q, Wang X Y, Wang Y, Yang Q H, Cheng D, Liu Y, Huang L, Zhang M R, Liang B, Zhao W and Zhang W F 2021 Opt. Lett. 46 4855
[11] Chang G L, Zhu H, Yu C R, Zhu H Q, Xu G Y and He L 2020 Infrared Phys. Technol. 109 103427
[12] Ackley D E 1983 Appl. Phys. Lett. 42 452
[13] Botez D, Hayashida P, Mawst L J and Roth T J 1988 Appl. Phys. Lett. 53 1366
[14] Naurois G M, Carras M, Simozrag B, Patard O, Alexandre F and Marcadet X 2011 AIP Adv. 1 032165
[15] Liu Y H, Zhang J C, Yan F L, Liu F Q, Zhuo N, Wang L J, Liu J Q and Wang Z G 2015 Appl. Phys. Lett. 106 142104
[16] Jiang W and Chakraborty S 2021 Opt. Lett. 46 1137
[17] Wenzel H, Crump P, Fricke J, Ressel P and Erbert G 2013 IEEE J. Quantum Electron. 491102
[18] Lyakh A, Maulini R, Tsekoun A, Go R and Patel C K N 2014 Opt. Express 22 1203
[19] Kirch J D, Chang C C, Boyle C, Mawst L J, Lindberg D, Earles T and Botez D 2015 Appl. Phys. Lett. 106 061113
[20] Kao T Y, Hu Q and Reno J L 2010 Appl. Phys. Lett. 96 101106
[21] Zhou X Y, Qu H W, Qi A Y, Ma X L, Zhao S Y, Wang Y F and Zheng W H 2018 IEEE Photonics Technol. Lett. 30 1645
[22] Jia Z W, Wang L, Zhang J C, Zhao Y, Liu C W, Zhai S Q, Zhuo N, Liu J Q, Wang L J, Liu S M, Liu F Q and Wang Z G 2017 Appl. Phys. Lett. 111 061108
[23] Xu Y F, Sun Y Q, Li W J, Ma Y, Zhuo N, Liu J Q, Zhang J C, Zhai S Q, Liu S, Wang L J and Liu F Q 2022 Opt. Express 30 36783
[24] Zhao Y, Zhang J C, Cheng F M, Wang D B, Liu C W, Zhuo N, Zhai S Q, Wang L J, Liu J Q, Liu S, Liu F Q and Wang Z G 2018 Nanoscale Res. Lett. 13 205
[25] Qi J, Lan T, MaW, Zhang J, Li Y, Li D Z, Liu X S andWang Z Y 2024 Opt. Laser Technol. 177 111168
[26] Leger J R 1989 Appl. Phys. Lett. 55 334
[27] Zhou C and Liu L 1995 Opt. Commun. 1 115
[28] Wen C Y, Li W, Dai J J, Ma S F and Wang Z Y 2023 Photonics 10 115
[29] Lei W, Dai J J, Li S N, Jin D Y and Wang Z Y 2024 J. Lightwave Technol. 42 8263
[30] Wang X F, Xu N, Gong Y H and Li J W 2025 Infrared Laser Eng. 54 20240448
[31] Pan G Z, Xun M, Sun Y, Zhao Z Z, Xu C, Xie Y Y, Wu D X and Zhou J T 2022 Opt. Laser Technol. 149 107809
[1] High-power ~ 4.1 μm quantum cascade lasers grown by metal-organic chemical vapor deposition
Chao Wang(王超), Chenhao Qian(钱晨灏), Yang Cheng(程洋), Junpu Wang(王俊普), Xiaoyue Luo(罗晓玥), Yuhang Zhang(章宇航), Wu Zhao(赵武), Fangyuan Sun(孙方圆), and Jun Wang(王俊). Chin. Phys. B, 2025, 34(7): 074204.
[2] High peak power mini-array quantum cascade lasers operating in pulsed mode
Yuhang Zhang(章宇航), Yupei Wang(王渝沛), Xiaoyue Luo(罗晓玥), Chenhao Qian(钱晨灏), Yang Cheng(程洋), Wu Zhao(赵武), Fangyuan Sun(孙方圆), Jun Wang(王俊), and Zheng-Ming Sun(孙正明). Chin. Phys. B, 2025, 34(1): 014204.
[3] Effects of TMIn flow rate during quantum barrier growth on multi-quantum well material properties and device performance of GaN-based laser diodes
Zhenyu Chen(陈振宇), Degang Zhao(赵德刚), Feng Liang(梁锋), Zongshun Liu(刘宗顺), Jing Yang(杨静), and Ping Chen(陈平). Chin. Phys. B, 2024, 33(12): 128102.
[4] Tunable artificial plasmonic nanolaser with wide spectrum emission operating at room temperature
Peng Zhou(周鹏), Jia-Qi Guo(郭佳琦), Kun Liang(梁琨), Lei Jin(金磊), Xiong-Yu Liang(梁熊玉), Jun-Qiang Li(李俊强), Xu-Yan Deng(邓绪彦), Jian-Yu Qin(秦建宇), Jia-Sen Zhang(张家森), and Li Yu(于丽). Chin. Phys. B, 2024, 33(5): 054210.
[5] Single-mode GaSb-based laterally coupled distributed-feedback laser for CO2 gas detection
Shi-Xian Han(韩实现), Jin-Yi Yan(严进一), Chun-Fang Cao(曹春芳), Jin Yang(杨锦), An-Tian Du(杜安天), Yuan-Yu Chen(陈元宇), Ruo-Tao Liu(刘若涛), Hai-Long Wang(王海龙), and Qian Gong(龚谦). Chin. Phys. B, 2023, 32(10): 104205.
[6] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[7] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[8] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[11] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[12] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[13] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[14] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[15] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
No Suggested Reading articles found!