Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030301    DOI: 10.1088/1674-1056/ad1985
RAPID COMMUNICATION Prev   Next  

Enhanced measurement precision with continuous interrogation during dynamical decoupling

Jun Zhang(张军)1, Peng Du(杜鹏)1, Lei Jing(敬雷)1, Peng Xu(徐鹏)1, Li You(尤力)2, and Wenxian Zhang(张文献)1,3,†
1 Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China;
2 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
3 Wuhan Institute of Quantum Technology, Wuhan 430206, China
Abstract  Dynamical decoupling (DD) is normally ineffective when applied to DC measurement. In its straightforward implementation, DD nulls out DC signal as well while suppressing noise. This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles. We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate. Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms, respectively, while ambient laboratory level noise is suppressed by DD. Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.
Keywords:  quantum sensing      continuous interrogation      quantum magnetometer      dynamical decoupling      Heisenberg limit  
Received:  05 October 2023      Revised:  11 December 2023      Accepted manuscript online:  29 December 2023
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Bg (Entanglement production and manipulation)  
  67.85.-d (Ultracold gases, trapped gases)  
Fund: Project supported by the NSAF (Grant No. U1930201), the National Natural Science Foundation of China (Grant Nos. 12274331, 91836101, and 91836302), the National Key R&D Program of China (Grant No. 2018YFA0306504), and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302100).
Corresponding Authors:  Wenxian Zhang     E-mail:  wxzhang@whu.edu.cn

Cite this article: 

Jun Zhang(张军), Peng Du(杜鹏), Lei Jing(敬雷), Peng Xu(徐鹏), Li You(尤力), and Wenxian Zhang(张文献) Enhanced measurement precision with continuous interrogation during dynamical decoupling 2024 Chin. Phys. B 33 030301

[1] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[2] Suter D and Álvarez G A 2016 Rev. Mod. Phys. 88 041001
[3] Biercuk M J, Uys H, VanDevender A P, Shiga N, Itano W M and Bollinger J J 2009 Phys. Rev. A 79 062324
[4] Kotler S, Akerman N, Glickman Y, Keselman A and Ozeri R 2011 Nature 473 61
[5] Bohnet J G, Sawyer B C, Britton J W, Wall M L, Rey A M, Foss-Feig M and Bollinger J J 2016 Science 352 1297
[6] Kaewuam R, Tan T R, Arnold K J, Chanu S R, Zhang Z and Barrett M D 2020 Phys. Rev. Lett. 124 083202
[7] Wang P, Luan C Y, Qiao M, Um M, Zhang J, Wang Y, Yuan X, Gu M, Zhang J and Kim K 2021 Nat. Commun. 12 233
[8] Petta J, Johnson A, Taylor J, Laird E, Yacoby A, Lukin M, Marcus C, Hanson M and Gossard A 2005 Science 309 2180
[9] Liu R B, Yao W and Sham L J 2007 New J. Phys. 9 226
[10] Cappellaro P, Jiang L, Hodges J S and Lukin M D 2009 Phys. Rev. Lett. 102 210502
[11] de Lange G, Wang Z H, Risté D, Dobrovitski V V and Hanson R 2010 Science 330 60
[12] Medford J, Cywiński L, Barthel C, Marcus C M, Hanson M P and Gossard A C 2012 Phys. Rev. Lett. 108 086802
[13] Rong X, Geng J, Wang Z, Zhang Q, Ju C, Shi F, Duan C K and Du J 2014 Phys. Rev. Lett. 112 050503
[14] Schmitt S, Gefen T, Stürner F M, Unden T, Wolff G, Müller C, Scheuer J, Naydenov B, Markham M, Pezzagna S, Meijer J, Schwarz I, Plenio M, Retzker A, McGuinness L P and Jelezko F 2017 Science 356 832
[15] Zopes J, Sasaki K, Cujia K S, Boss J M, Chang K, Segawa T F, Itoh K M and Degen C L 2017 Phys. Rev. Lett. 119 260501
[16] Nakamura Y, Pashkin Y A, Yamamoto T and Tsai J S 2002 Phys. Rev. Lett. 88 047901
[17] Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K, Fitch G, Cory D G, Nakamura Y, Tsai J S and Oliver W D 2011 Nat. Phys. 7 565
[18] Pokharel B, Anand N, Fortman B and Lidar D A 2018 Phys. Rev. Lett. 121 220502
[19] Eto Y, Ikeda H, Suzuki H, Hasegawa S, Tomiyama Y, Sekine S, Sadgrove M and Hirano T 2013 Phys. Rev. A 88 031602
[20] Muessel W, Strobel H, Linnemann D, Hume D B and Oberthaler M K 2014 Phys. Rev. Lett. 113 103004
[21] Trypogeorgos D, Valdés-Curiel A, Lundblad N and Spielman I B 2018 Phys. Rev. A 97 013407
[22] Anderson R P, Kewming M J and Turner L D 2018 Phys. Rev. A 97 013408
[23] In contrast to coupling all the spin levels during a pulse, remarkably, Kaewuam et al. demonstrated an exquisite strategy for dynamical decoupling implemented in multi-ion clock system, where a pulse only couples upper hyperfine levels of a clock transition to cancel out inhomogeneous broadening associated with the electric quadrupole shift induced by neighboring ions.[6]
[24] Hirose M, Aiello C D and Cappellaro P 2012 Phys. Rev. A 86 062320
[25] We note that the low frequency AC signal fields are specified as those with a characteristic time much longer than the measurement time.
[26] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[27] Esteve J, Gross C, Weller A, Giovanazzi S and Oberthaler M K 2008 Nature 455 1216
[28] Hamley C D, Gerving C S, Hoang T M, Bookjans E M and Chapman M S 2012 Nat. Phys. 8 305
[29] Pezzé L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005
[30] Kaubruegger R, Silvi P, Kokail C, van Bijnen R, Rey A M, Ye J, Kaufman A M and Zoller P 2019 Phys. Rev. Lett. 123 260505
[31] Bao H, Duan J, Jin S, Lu X, Li P, Qu W, Wang M, Novikova I, Mikhailov E E, Zhao K F, Molmer K, Shen H and Xiao Y 2020 Nature 581 159
[32] Baamara Y, Sinatra A and Gessner M 2021 Phys. Rev. Lett. 127 160501
[33] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810
[34] Aiello C D, Hirose M and Cappellaro P 2013 Nat. Commun. 4 1419
[35] Wolf T, Neumann P, Nakamura K, Sumiya H, Ohshima T, Isoya J and Wrachtrup J 2015 Phys. Rev. X 5 041001
[36] Lang J E, Liu R B and Monteiro T S 2015 Phys. Rev. X 5 041016
[37] Boss J M, Cujia K S, Zopes J and Degen C L 2017 Science 356 837
[38] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[39] DC signal here refers to a static (or low frequency) magnetic field to be measured, while an observable such as spin average is oscillating with a (high) Larmor frequency.
[40] Law C K, Pu H and Bigelow N P 1998 Phys. Rev. Lett. 81 5257
[41] The quadratic Zeeman shift for 87Rb scales as 72 Hz/G2, resulting negligible quadratic energy for our calculation at a typical magnetic field (~ 10 mG).
[42] Hahn E L 1950 Phys. Rev. 80 580
[43] Meiboom S and Gill D 1958 Rev. Sci. Inst. 29 688
[44] Solomon I 1959 Phys. Rev. Lett. 2 301
[45] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[46] Uhrig G S 2007 Phys. Rev. Lett. 98 100504
[47] Cywiński L, Lutchyn R M, Nave C P and Das Sarma S 2008 Phys. Rev. B 77 174509
[48] Uhrig G S 2009 Phys. Rev. Lett. 102 120502
[49] Haeberlen U 1976 High Resolution NMR in Solids Selective Averaging (New York: Academic Press)
[50] Zhang J, Han Y, Xu P and Zhang W 2016 Phys. Rev. A 94 053608
[51] Yao Q, Zhang J, Yi X F, You L and Zhang W 2019 Phys. Rev. Lett. 122 010408
[52] Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K and You L 2017 Science 355 620
[53] Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K and You L 2018 Proc. Natl. Acad. Sci. USA 115 6381
[54] Gross C, Zibold T, Nicklas E, Esteve J and Oberthaler M K 2010 Nature 464 1165
[55] Vengalattore M, Higbie J M, Leslie S R, Guzman J, Sadler L E and Stamper-Kurn D M 2007 Phys. Rev. Lett. 98 200801
[56] Kell A, Link M, Breyer M, Hoffmann A, Köhl M and Gao K 2021 Rev. Sci. Instr. 92 093202
[57] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[1] Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
Yangpeng Wang(王杨鹏), Rujian Zhang(章如健), Yan Yang(杨燕), Qin Wu(吴琴), Zhifei Yu(于志飞), and Bing Chen(陈冰). Chin. Phys. B, 2023, 32(7): 070301.
[2] Enhanced phase sensitive amplification towards improving noise immunity
Hui Guo(郭辉), Zhi Li(李治), Hengxin Sun(孙恒信), Kui Liu(刘奎), and Jiangrui Gao(郜江瑞). Chin. Phys. B, 2023, 32(5): 054204.
[3] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[4] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[5] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[6] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[7] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[8] Effects of imperfect pulses on dynamical decoupling using quantum trajectory method
Lin-Ze He(何林泽), Man-Chao Zhang(张满超), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(12): 120303.
[9] A scheme for Sagnac-effect quantum enhancement with Fock state light input
Kun Chen(陈坤), Shu-Xin Chen(陈树新), De-Wei Wu(吴德伟), Chun-Yan Yang(杨春燕), Qiang Miao(苗强). Chin. Phys. B, 2017, 26(9): 094212.
No Suggested Reading articles found!