Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 106101    DOI: 10.1088/1674-1056/adf041
Special Issue: Featured Column — DATA PAPER
DATA PAPER Prev   Next  

Database of superconductors with kagome lattice by high-throughput screening

Lihong Wang(王历宏)1,2,†, Qi Li(李琦)1,2,†, Ke Ma(马克)1,2, Yingpeng Yu(于英鹏)1,2, Shifeng Jin(金士锋)1,3,‡, and Xiaolong Chen(陈小龙)1,3,§
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
Abstract  The kagome lattice, characterized by a hexagonal arrangement of corner-sharing equilateral triangles, has garnered significant attention as a fascinating quantum material system that hosts exotic magnetic and electronic properties. The identification and characterization of this class of materials are critical for advancing our understanding of their role in emergent phenomena such as superconductivity. In this study, we developed a high-throughput screening framework for the systematic identification and classification of superconducting materials with kagome lattices, integrating them into established materials databases. Leveraging the Materials Project (MP) database and the MDR SuperCon dataset, we analyzed over 150000 inorganic compounds and cross-referenced 26000 known superconductors. Using geometry-based structural modeling and experimental validation, we identified 129 kagome superconductors belonging to 17 distinct structural families, many of which had not previously been recognized as kagome systems. The materials are further classified into three categories in terms of topological flat bands, clean band structures, and coexisting magnetic or charge density wave (CDW) orderings. Based on these results, we established a database comprising 129 kagome superconductors, including the detailed crystallographic, electronic, and superconducting properties of these materials.
Keywords:  superconductor      kagome lattice      database  
Received:  15 May 2025      Revised:  14 July 2025      Accepted manuscript online:  16 July 2025
PACS:  61.68.+n (Crystallographic databases)  
  74.25.-q (Properties of superconductors)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFE0202600), the National Natural Science Foundation of China (Grant No. 52272268), the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSWSLH013), the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0102), and the Youth Innovation Promotion Association of CAS (Grant No. 2019005).
Corresponding Authors:  Shifeng Jin, Xiaolong Chen     E-mail:  shifengjin@iphy.ac.cn;chenx29@iphy.ac.cn

Cite this article: 

Lihong Wang(王历宏), Qi Li(李琦), Ke Ma(马克), Yingpeng Yu(于英鹏), Shifeng Jin(金士锋), and Xiaolong Chen(陈小龙) Database of superconductors with kagome lattice by high-throughput screening 2025 Chin. Phys. B 34 106101

[1] Lin Z, Choi J H, Zhang Q, et al. 2018 Phys. Rev. Lett. 121 096401
[2] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[3] Liu D F, Liang A J, Liu E K, et al. 2019 Science 365 1282
[4] Teng X, Chen L, Ye F, et al. 2022 Nature 609 490
[5] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[6] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X and Hu J 2023 National Science Review 10 nwac199
[7] Ortiz B R, Teicher SML, Hu Y, et al. 2020 Phys. Rev. Lett. 125 247002
[8] Song Y P, Ying T P, Chen X, Han X, Wu X, Schnyder A P, Huang Y, Guo J G and Chen X L 2021 Phys. Rev. Lett. 127 237001
[9] Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G and Chen X L 2021 Chin. Phys. Lett. 38 057402
[10] Seki Y, Hagino T, Takayanagi S and Nagata S 1992 J. Phys. Soc. Jpn. 61 2597
[11] Xu Z, Le T and Lin X 2025 Chin. Phys. Lett. 42 037304
[12] Yan X, Deng H, Yang T, Liu G, Song W, Miao H, Tu Z, Lei H,Wang S and Lin B 2024 Chin. Phys. Lett. 41 097401
[13] Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K and Liu M 2022 Chin. Phys. Lett. 39 047402
[14] Zhang X, Chen A and Zhou Z 2019 WIREs Comput. Mol. Sci. 9 e1385
[15] Regnault N, Xu Y, Li M R, et al. 2022 Nature 603 824
[16] Meschke V, Gorai P, Stevanović V and Toberer E S 2021 Chem. Mater. 33 4373
[17] MDR SuperCon Datasheet Version 220808 2022 (Exception: Datasheet)
[18] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Materials 1 011002
[19] Jovanovic M and Schoop L M 2022 J. Am. Chem. Soc. 144 10978
[20] Singh H K, Sehrawat A, Shen C, Samathrakis I, Opahle I, Zhang H and Xie R 2023 Acta Materialia 242 118474
[21] Ong S P, RichardsWD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Computational Materials Science 68 314
[22] Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A and Ceder G 2011 Phys. Rev. B 84 045115
[23] Wang A, Kingsbury R, McDermott M, Horton M, Jain A, Ong S P, Dwaraknath S and Persson K A 2021 Sci. Rep. 11 15496
[24] Aykol M, Dwaraknath S S, Sun W and Persson K A 2018 Sci. Adv. 4 eaaq0148
[25] Horton M K, Montoya J H, Liu M and Persson K A 2019 npj Comput. Mater. 5 64
[26] Munro J M, Latimer K, Horton M K, Dwaraknath S and Persson K A 2020 npj Comput. Mater. 6 112
[27] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[28] Le T, Liu J, Wang Z and Lin X 2024 Chin. Phys. B 33 107402
[29] Liu Y, Li J, YangW, Lu J, Cao B, Li H, ChaiW,Wu S, Li B, Sun Y, Jiao W, Wang C, Xu X, Ren Z and Cao G 2024 Chin. Phys. B 33 057401
[30] Bolens A and Nagaosa N 2019 Phys. Rev. B 99 165141
[31] Sun Z, Zhou H, Wang C, Kumar S, Geng D, Yue S, Han X, Haraguchi Y, Shimada K, Cheng P, Chen L, Shi Y, Wu K, Meng S and Feng B 2022 Nano Lett. 22 4596
[32] Tang F, Ono S, Wan X and Watanabe H 2022 Phys. Rev. Lett. 129 027001
[33] Yu Y, Liu Z, Chen Z, Li Q,Wang Y,Wang X, Gong C, Zhuang Z, Ruan B B, Ren H, Sun P, Guo J G and Jin S 2025 Chin. Phys. B 34 017401
[34] Mielke III C, Liu H, Das D, Yin J X, Deng L Z, Spring J, Gupta R, Medarde M, Chu C W, Khasanov R, Hasan Z M, Shi Y, Luetkens H and Guguchia Z 2022 J. Phys.: Condens. Matter 34 485601
[35] Jin K, He G, Zhang X, Maruyama S, Yasui S, Suchoski R, Shin J, Jiang Y, Yu H S, Yuan J, Shan L, Kusmartsev F V, Greene R L and Takeuchi I 2015 Nat. Commun. 6 7183
[36] Kishimoto Y, Ohno T, Kanashiro T, Michihiro Y, Mizuno K, Miyamoto M, Tanaka T and Miyatani K 1995 Solid State Commun. 96 23
[37] Sato N K, Aso N, Miyake K, Shiina R, Thalmeier P, Varelogiannis G, Geibel C, Steglich F, Fulde P and Komatsubara T 2001 Nature 410 340
[38] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 046401
[39] Song B, Ying T, Wu X, et al. 2023 Nat Commun 14 2492
[40] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R and Wilson S D 2021 Phys. Rev. X 11 041030
[41] Pan V M, Bulakh I E, Kasatkin A L and Shevchenko A D 1978 Journal of the Less Common Metals 62 157
[42] Kawaguchi S, Kubota Y, Tsuji N, Kim J, Kato K, Takata M and Ishibashi H 2012 J. Phys.: Conf. Ser. 391 012095
[43] Kawaguchi S, Ishibashi H, Tsuji N, Kim J, Kato K, Takata M and Kubota Y 2013 J. Phys. Soc. Jpn. 82 064603
[44] Le Nagard N, Katty A, Collin G, Gorochov O and Willig A 1979 Journal of Solid State Chemistry 27 267
[45] Dong Z, Shi L, Wang B, Huo M, Huang X, Huang C, Ma P, Zhang Y, Shen B and Wang M 2024 Chin. Phys. B 33 107102
[1] A semiconductor-like in-plane junction between overdoped and optimally doped La2-xCexCuO4
Mohsin Rafique(莫辛 拉菲克), Rui Wu(吴蕊), Zefeng Lin(林泽丰), Kui Jin(金魁), Qi-Kun Xue(薛其坤), and Ding Zhang(张定). Chin. Phys. B, 2025, 34(9): 097404.
[2] Surface reconstruction modulated superconductivity on quasi-2D iron pnictide superconductor KCa2Fe4As4F2
Wenjing Zeng(曾文静), Zongyuan Zhang(张宗源), Xiaoyan Dong(董晓燕), Yubing Tu(涂玉兵), Yanwei Wu(吴彦玮), Teng Wang(王腾), Fan Zhang(张凡), Shuai Shao(邵帅), Jie Hou(侯杰), Xingyuan Hou(侯兴元), Ning Hao(郝宁), Gang Mu(牟刚), and Lei Shan(单磊). Chin. Phys. B, 2025, 34(8): 087402.
[3] Observation of a long-range unidirectional charge density wave in kagome superconductor KV3Sb5
Xingwei Shi(石兴伟), Xiao Liu(刘潇), Geng Li(李更), Zhen Zhao(赵振), Haitao Yang(杨海涛), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077101.
[4] Nontrivial Fermi surface topology in kagome superconductor CsTi3Bi5 revealed by de Haas-van Alphen oscillation
Yuhang Zhang(张宇航), Xinwei Yi(易鑫伟), Zhen Zhao(赵振), Jiali Liu(刘家利), Aini Xu(胥艾妮), Dong Li(李栋), Zouyouwei Lu(鲁邹有为), Yue Liu(刘樾), Jihu Lu(卢佶虎), Hua Zhang(张华), Hui Chen(陈辉), Shiliang Li(李世亮), Ziyi Liu(刘子儀), Jinguang Cheng(程金光), Gang Su(苏刚), Haitao Yang(杨海涛), Xiaoli Dong(董晓莉), Hong-Jun Gao(高鸿钧), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2025, 34(7): 077107.
[5] Dimensional crossover from quasi-2D to 3D superconductivity in (Li,Fe)OHFeSe1-xSx driven by chemical pressure
Yuxin Ma(马宇欣), Munan Hao(郝木难), Qi Li(李琦), Ke Ma(马克), Haodong Li(李浩东), Duo Zhang(张铎), Ruijin Sun(孙瑞锦), Shifeng Jin(金士锋), and Changchun Zhao(赵长春). Chin. Phys. B, 2025, 34(6): 067402.
[6] Unconventional superconductivity in Cr-based nitride La3Cr10-xN11
M Y Zou(邹牧远), J C Jiao(焦嘉琛), K W Chen(陈锴文), C Y Jiang(姜程予), C S Chen(陈长胜), X Li(李鑫), Q Wu(吴琼), N Y Zhang(张宁远), O O Bernal, P C Ho, A Koda, D E MacLaughlin, and L Shu(殳蕾). Chin. Phys. B, 2025, 34(11): 117104.
[7] HTSC-2025: A benchmark dataset of ambient-pressure high-temperature superconductors for AI-driven critical temperature prediction
Xiao-Qi Han(韩小琪), Ze-Feng Gao(高泽峰), Xin-De Wang(王馨德), Zhenfeng Ouyang(欧阳振峰), Peng-Jie Guo(郭朋杰), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2025, 34(10): 100301.
[8] Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al
Yingpeng Yu(于英鹏), Zhaolong Liu(刘兆龙), Zhaoxu Chen(陈昭旭), Qi Li(李琦), Yulong Wang(王玉龙), Xuhui Wang(王旭辉), Chunsheng Gong(龚春生), Zhaotong Zhuang(庄照通), Bin-Bin Ruan(阮彬彬), Huifen Ren(任会芬), Peijie Sun(孙培杰), Jian-Gang Guo(郭建刚), and Shifeng Jin(金士锋). Chin. Phys. B, 2025, 34(1): 017401.
[9] Database of ternary amorphous alloys based on machine learning
Xuhe Gong(巩旭菏), Ran Li(李然), Ruijuan Xiao(肖睿娟), Tao Zhang(张涛), and Hong Li(李泓). Chin. Phys. B, 2025, 34(1): 016101.
[10] Electronic band structures of topological kagome materials
Man Li(李满), Huan Ma(马欢), Rui Lou(娄睿), and Shancai Wang(王善才). Chin. Phys. B, 2025, 34(1): 017101.
[11] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[12] Topological superconductors with spin-triplet pairings and Majorana Fermi arcs
Shi Huang(黄石) and Xi Luo(罗熙). Chin. Phys. B, 2024, 33(8): 087301.
[13] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[14] Two-fold symmetry of the in-plane resistance in kagome superconductor Cs(V1-xTax)3Sb5 with enhanced superconductivity
Zhen Zhao(赵振), Ruwen Wang(王汝文), Yuhang Zhang(张宇航), Ke Zhu(祝轲), Weiqi Yu(余维琪), Yechao Han(韩烨超), Jiali Liu(刘家利), Guojing Hu(胡国静), Hui Guo(郭辉), Xiao Lin(林晓), Xiaoli Dong(董晓莉), Hui Chen(陈辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077406.
[15] Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2024, 33(7): 077202.
No Suggested Reading articles found!