Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 106103    DOI: 10.1088/1674-1056/adf9fb
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Displacement damage of the space broad-spectrum proton in semiconductor materials

Yue-Qian Jiang(姜月千)1,†, Li-Chao Tian(田立朝)1,†, Guo-Bo Zhang(张国博)1,‡, Run-Zhou Yu(余润洲)1, Bi-Hao Xu(徐碧浩)1, Xiang-Cheng Li(李翔城)2, Yan-Qing Deng(邓彦卿)2, De-Bin Zou(邹德滨)1, Tong Wu(吴桐)2, Yan-Yun Ma(马燕云)3,4, and Xiao-Hu Yang(杨晓虎)1,§
1 College of Science, National University of Defense Technology, Changsha 410073, China;
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
3 School of Automation and Electronic Information, Xiangtan University, Hunan 411105, China;
4 School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Displacement damage induced by high-energy protons in the space radiation environment presents a serious risk to the reliability of spacecraft materials and onboard electronics. Nevertheless, studies on displacement damage induced by space-based broad-spectrum protons are still limited. In this paper, the nonionizing energy loss (NIEL) of space broad-spectrum protons at different orbital altitudes in semiconductor materials is investigated using Geant4 Monte Carlo simulations. We find that the NIEL of silicon (Si) and gallium arsenide (GaAs) first increases and then decreases with orbital altitude, and that shielding effects can result in either the saturation or continuous increase of NIEL, depending on the shielding layer thickness. A fast NIEL calculation method for arbitrary broad spectra is proposed based on statistical probability principles and the effective proton proportion. Meanwhile, a more uniform spatial distribution of mean damage energy per source particle ($T_{\rm dam}$) deposition from broad-spectrum protons can be achieved by increasing the shielding layer thickness and lowering the orbital altitude. Notably, the relative contribution of displacement damage caused by nuclear reactions decreases with increasing orbital altitude and shielding layer thickness. The results provide a quantitative reference for space displacement damage in semiconductor materials.
Keywords:  nonionizing energy loss      space broad-spectrum protons      shielding layer      Geant4  
Received:  10 June 2025      Revised:  30 July 2025      Accepted manuscript online:  11 August 2025
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Jh (Ion radiation effects)  
  61.82.Fk (Semiconductors)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12475252, 12175309, and 12175310), the Fund of National University of Defense Technology (Grant No. 22-ZZCX-068), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25050200 and XDA25010100), and the Natural Science Foundation of Hunan Province, China (Grant No. 2025JJ20007).
Corresponding Authors:  Guo-Bo Zhang, Xiao-Hu Yang     E-mail:  zgb830@163.com;xiaohu.yang@aliyun.com

Cite this article: 

Yue-Qian Jiang(姜月千), Li-Chao Tian(田立朝), Guo-Bo Zhang(张国博), Run-Zhou Yu(余润洲), Bi-Hao Xu(徐碧浩), Xiang-Cheng Li(李翔城), Yan-Qing Deng(邓彦卿), De-Bin Zou(邹德滨), Tong Wu(吴桐), Yan-Yun Ma(马燕云), and Xiao-Hu Yang(杨晓虎) Displacement damage of the space broad-spectrum proton in semiconductor materials 2025 Chin. Phys. B 34 106103

[1] Srour J R, Marshall C J and Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653
[2] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F,WeberWJ,Willaime F, Dudarev S L and Simeone D 2018 J. Nucl. Mater. 512 450
[3] Inguimbert C 2025 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 561 165622
[4] Srour J R and Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740
[5] Jay A, Hemeryck A, Richard N, Martin-Samos L, Raine M, Le Roch A, Mousseau N, Goiffon V, Paillet P, Gaillardin M and Magnan P 2018 IEEE Trans. Nucl. Sci. 65 724
[6] Altamura A R, Acerbi F, Di Ruzza B, Verroi E, Merzi S and Gola A 2021 arXiv:2112.08089 [physics.ins-det]
[7] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L and Simeone D 2018 Nat. Commun. 9 1084
[8] Nishiguchi M, Hashinaga T, Nishizawa H, Hayashi H, Okazaki N, Kitagawa M and Fujino T 1990 IEEE Trans. Nucl. Sci. 37 2071
[9] Fleetwood D M 2021 IEEE Trans. Nucl. Sci. 68 509
[10] Kinchin G H and Pease R S 1955 Rep. Prog. Phys. 18 1
[11] Meneghesso G, Paccagnella A, Camin D V, Fedyakin N, Pessina G and Canali C 1997 IEEE Trans. Nucl. Sci. 44 840
[12] Robinson M and Torrens I 1974 Phys. Rev. B 9 5008
[13] Belloir J M, Goiffon V, Virmontois C, Paillet P, Raine M, Magnan P and Gilard O 2016 IEEE Trans. Nucl. Sci. 63 2183
[14] Li J W, Wang Z J, Shi C Y, Xue Y Y, Ning H, Xu R, Jiao Q L and Jia T X 2020 Acta Phys. Sin. 69 098802 (in Chinese)
[15] Jouni A, Sicre M, Malherbe V, Mamdy B, Thery T, Belloir J M, Soussan D, De Paoli S, Lorquet V, Lalucaa V, Virmontois C, Gasiot G and Goiffon V 2023 IEEE Trans. Nucl. Sci. 70 515
[16] Wang Z J, Xue Y Y, Wang Z M, Chen W, Yin L Y, Wang X H, Nie Xu, Lai S K, Huang G, Wang M C, Ding L L, He B P, Ma W Y and Gou S L 2024 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1058 168784
[17] Inguimbert C, Arnolda P, Nuns T and Rolland G 2010 IEEE Trans. Nucl. Sci. 57 1915
[18] Chen J, Jung P and Klein H 1998 J. Nucl. Mater. 258-263 1803
[19] Warner J H, Messenger S R,Walters R J, Summers G P, Lorentzen J R, Wilt D M and Smith M A 2006 IEEE Trans. Nucl. Sci. 53 1988
[20] Okuno Y, Okuda S, Akiyoshi M, Oka T, Harumoto M, Omura K, Kawakita S, Imaizumi M, Messenger S R, Lee K H and Yamaguchi M 2017 J. Appl. Phys. 122 114901
[21] Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M and Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595
[22] Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M and Lifshitz Y 2001 Radiat. Phys. Chem. 62 301
[23] Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P and Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924
[24] Inguimbert C and Gigante R 2006 IEEE Trans. Nucl. Sci. 53 1967
[25] Akkerman A, Barak J and Murat M 2020 IEEE Trans. Nucl. Sci. 67 1813
[26] Akkerman A, Barak J and Murat M 2022 IEEE Trans. Nucl. Sci. 69 2056
[27] Inguimbert C, Durand A, Nuns T and Lemière K 2021 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 490 7
[28] Messenger S R, Summers G P, Burke E A, Walters R J and Xapsos M A 2001 Prog. Photovolt. Res. Appl. 9 103
[29] Srour J R and Palko J W 2006 IEEE Trans. Nucl. Sci. 53 3610
[30] Hou S H, Dong S L, Yang J Q, Liu Z L, Guan E H, Lin G, Shao G J, Zhang Y B, Jiang J C and Li X J 2025 IEEE Trans. Nucl. Sci. 72 858
[31] Hou S H, Dong S L, Yang J Q, Guan E H, Liu Z L, Shao G J, Zhang Y B and Li X J 2023 IEEE Trans. Nucl. Sci. 70 2590
[32] Inguimbert C 2021 J. Nucl. Mater. 559 153398
[33] Liu L N, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C and Li B 2023 IEEE Trans. Nucl. Sci. 70 1885
[34] Parize J, Jarrin T, Fées A, Lambert D, Jay A, Morin V, Hemeryck A and Richard N 2024 IEEE Trans. Nucl. Sci. 71 1461
[35] Ye E L, Lai Y F, Shen C X, Hou Y J and Nan H J 2025 Radiat. Phys. Chem. 228 112417
[36] Jun I 2001 IEEE Trans. Nucl. Sci. 48 162
[37] Xing T, Liu S S, Song C, Wang X, Adekoya M A, Wang C, Li H D, Meng F J, Du X Z, Sun Y F, Zhu S J, Wang L P, Chen W, Li K and Zheng X H 2024 AIP Adv. 14 015142
[38] Bai Y R, Li P, He H, Liu F, Li W and He C H 2024 Acta Phys. Sin. 73 052401 (in Chinese)
[39] Bai Y R, Li Y H, Liu F, Liao L, He H, Yang W T and He C H 2021 Acta Phys. Sin. 70 172401 (in Chinese)
[40] Xue B T, Zhang L M, Liang Y Q, Liu N, Wang D P, Chen L and Wang T S 2023 Acta Phys. Sin. 70 138802 (in Chinese)
[41] Luan N T, Ahn S-W, Hwang Y S, Nam U W, Kang S C and Kim H J 2024 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1059 168926
[42] Yang X H, Yu W, Xu H, Zhou H B, Ma Y Y, Zou D B, Yu T P, Ge Z Y, Yin Y and Shao F Q 2014 Phys. Plasmas. 21 063105
[43] Yang X H, Dieckmann M E, Sarri G, Borghesi M 2012 Phys. Plasmas. 19 113110
[44] Yang X H, Ma Y Y, Shao F Q, Xu H, Yu M Y, Gu Y Q, Yu T P, Yin Y, Tian C L and Kawata S 2010 Laser Part. Beams 28 319
[45] Zhong P L, Jiang Y Q, Zi M, Li X C, Zhao N, Deng Y Q, Wu T, Yu R Z, Zhang G B, Yang X H and Ma Y Y 2025 Acta Phys. Sin. 74 065201 (in Chinese)
[46] Wang C Z 2007 The Research of The Non-ionizing Energy Losses of material by Particles in Space Environment (Master’s Thesis) (Shanghai: Shang Hai University) (in Chinese)
[47] Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506 250
[48] Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270
[49] Song C, Liu S H, Wang X, Mu H B, Bai Y R, Li H D, Xing T, He C H and Chen W 2023 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 545 165144
[50] Mendenhall M H and Weller R A 2005 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 227 420
[51] Li J W, Wang Z J, Shi C Y, Xue Y Y, Ning H, Xu R, Jiao Q L and Jia T X 2020 Acta Phys. Sin. 69 098802 (in Chinese)
[52] Mohamed M, Tariq J, Khalil E H and Ahmed L 2023 JOM 75 3601
[53] Saeide N and Kiazand F 2022 J. Comput. Electron. 21 513
[54] Summers G P, Burke E A, Shapiro P, Messenger S R and Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372
[55] Gaffey J D and Bilitza D 1994 J. Spacecr. Rockets 31 172
[56] Heynderickx D, Quaghebeur B, Wera J, Daly E J and Evans H D R 2004 Space Weather 2 2004
[57] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268 1818
[1] Effect of gold doping on relativistic electron beam transport in high-density plasma
Zi-Yan Zhang(张子彦) and Wei-Min Wang(王伟民). Chin. Phys. B, 2025, 34(7): 075201.
[2] Neutron-induced single event upset simulation in Geant4 for three-dimensional die-stacked SRAM
Li-Hua Mo(莫莉华), Bing Ye(叶兵), Jie Liu(刘杰), Jie Luo(罗捷), You-Mei Sun(孙友梅), Chang Cai(蔡畅), Dong-Qing Li(李东青), Pei-Xiong Zhao(赵培雄), and Ze He(贺泽). Chin. Phys. B, 2021, 30(3): 036103.
[3] Geant4 simulation of proton-induced single event upset in three-dimensional die-stacked SRAM device
Bing Ye(叶兵), Li-Hua Mo(莫莉华), Tao Liu(刘涛), Jie Luo(罗捷), Dong-Qing Li(李东青), Pei-Xiong Zhao(赵培雄), Chang Cai(蔡畅), Ze He(贺泽), You-Mei Sun(孙友梅), Ming-Dong Hou(侯明东), Jie Liu(刘杰). Chin. Phys. B, 2020, 29(2): 026101.
[4] Investigation of flux dependent sensitivity on single event effect in memory devices
Jie Luo(罗捷), Tie-shan Wang(王铁山), Dong-qing Li(李东青), Tian-qi Liu(刘天奇), Ming-dong Hou(侯明东), You-mei Sun(孙友梅), Jing-lai Duan(段敬来), Hui-jun Yao(姚会军), Kai Xi(习凯), Bing Ye(叶兵), Jie Liu(刘杰). Chin. Phys. B, 2018, 27(7): 076101.
[5] Simulation of positron backscattering and implantation profiles using Geant4 code
Huang Shi-Juan (黄世娟), Pan Zi-Wen (潘子文), Liu Jian-Dang (刘建党), Han Rong-Dian (韩荣典), Ye Bang-Jiao (叶邦角). Chin. Phys. B, 2015, 24(10): 107803.
[6] Monte Carlo evaluation of spatial multiple-bit upset sensitivity to oblique incidence
Geng Chao (耿超), Liu Jie (刘杰), Xi Kai (习凯), Zhang Zhan-Gang (张战刚), Gu Song (古松), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Duan Jing-Lai (段敬来), Yao Hui-Jun (姚会军), Mo Dan (莫丹). Chin. Phys. B, 2013, 22(5): 059501.
[7] Monte Carlo simulation of electron beam air plasma characteristics
Deng Yong-Feng(邓永锋), Han Xian-Wei(韩先伟), and Tan Chang(谭畅). Chin. Phys. B, 2009, 18(9): 3870-3876.
[8] Monte Carlo simulation of exposure factor
Zhang Tao(张涛), Liu Yi-Bao(刘义保), Yang Bo(杨波), Wu He-Xi(吴和喜), and Gu Jin-Hu(顾金虎). Chin. Phys. B, 2009, 18(6): 2217-2222.
[9] Effects of electron radiation on shielded space and triple-junction GaAs solar cells
Gao Xin(高欣), Yang Sheng-Sheng(杨生胜), Xue Yu-Xiong(薛玉雄), Li Kai(李凯), Li Dan-Ming(李丹明), Wang Yi(王鹢), Wang Yun-Fei(王云飞), and Feng Zhan-Zu(冯展祖). Chin. Phys. B, 2009, 18(11): 5015-5019.
[10] GEANT4 simulation of gamma ray in a double-gap resistive plate chamber
J. T. Rhee, M. Jamil, Steve Hall, Y. J. Jeon. Chin. Phys. B, 2006, 15(1): 108-115.
No Suggested Reading articles found!