|
Special Issue:
SPECIAL TOPIC — Advanced magnonics
|
| TOPICAL REVIEW — Advanced magnonics |
Prev
Next
|
|
|
Controlling coupled magnons with pumps |
| Fan Yang(杨帆)1,†, Chenxiao Wang(王辰笑)1,†, Zhijian Chen(陈志坚)1, Kaixin Zhao(赵恺欣)1, Weihao Liu(刘炜豪)2, Shuhuan Ma(马舒寰)1, Chunke Wei(魏纯可)2, Jiantao Song(宋剑涛)1, Jinwei Rao(饶金威)3,‡, and Bimu Yao(姚碧霂)1,2,§ |
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; 3 School of Physics, Shandong University, Jinan 250100, China |
|
|
|
|
Abstract Strong coupling effects in magnonic systems are highly promising. They combine the advantages of different quasiparticles and enable energy transfer for coherent information processing. When driven by microwave, electric, or optical pumps, these coupling effects can give rise to intriguing nonlinear phenomena, which have become a focal point in the field of magnonics. This review systematically explores pump-engineered magnon-coupling systems from three perspectives: (1) pump-induced hybridization of magnon modes, (2) nonlinear manipulation of magnon dynamics, and (3) implementation of functional magnonic devices. Unlike conventional cavity-magnon interactions that are constrained by electromagnetic boundaries, pumped coupled magnons are liberated from these restrictions. They can operate over a broad frequency band rather than being confined to discrete modes. An example is the recently discovered pump-induced magnon mode (PIM). These magnons arise from the collective excitations of unsaturated spins driven by microwave pumps. They exhibit reduced damping and photon-number-sensitive splitting characteristics, facilitating waveform-controlled coupling strength and enhanced nonlinearity - features that support phenomena such as magnonic frequency combs (MFCs). By expanding this principle to electric pumping schemes, we bridge fundamental physics and practical device applications, enabling nonreciprocal switching and meter-scale strong coupling. These advances establish high-dimensional control capabilities for coupled magnonics and pave the way for their use as a promising platform for dynamically programmable devices, magnetic-field sensing, and coherent networks.
|
Received: 31 March 2025
Revised: 20 May 2025
Accepted manuscript online: 27 May 2025
|
|
PACS:
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
| |
75.30.Ds
|
(Spin waves)
|
| |
85.70.Ge
|
(Ferrite and garnet devices)
|
| |
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
| Fund: This work has been supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0580000), the National Natural Science Foundation of China (Grant Nos. 12204306, 12122413, 12227901, 12474120, and U23A6002), the Science and Technology Commission of Shanghai Municipality (Grant Nos. 23JC1404100 and 22JC1403300), the National Key R&D Program of China (Grant Nos. 2022YFA1404603 and 2023YFA1406604), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2024YQ001), and the Qilu Young Scholar Programs of Shandong University. |
Corresponding Authors:
Jinwei Rao, Bimu Yao
E-mail: raojw@sdu.edu.cn;yaobimu@mail.sitp.ac.cn
|
Cite this article:
Fan Yang(杨帆), Chenxiao Wang(王辰笑), Zhijian Chen(陈志坚), Kaixin Zhao(赵恺欣), Weihao Liu(刘炜豪), Shuhuan Ma(马舒寰), Chunke Wei(魏纯可), Jiantao Song(宋剑涛), Jinwei Rao(饶金威), and Bimu Yao(姚碧霂) Controlling coupled magnons with pumps 2025 Chin. Phys. B 34 107508
|
[1] Takeuchi S, Kim J, Yamamoto Y and Hogue H H 1999 Appl. Phys. Lett. 74 1063 [2] Cova S D and Ghioni M 2011 IEEE Photonics Journal 3 274 [3] Kulish M and Malysh M 2022 Semicond. Phys., Quantum Electron. Optoelectron. 25 68 [4] Hao H, Zhao Q Y, Huang Y H, Deng J, Yang F, Ru S Y, Liu Z, Wan C, Liu H, Li Z J, et al. 2024 Light: Science & Applications 13 25 [5] Wu W, Chen M, Zhang Z, Liu X and Dong Y 2018 Science China Information Sciences 61 1 [6] Zhou X, Bec J, Yankelevich D and Marcu L 2021 Opt. Express 29 20105 [7] Yotter R A and Wilson D M 2003 IEEE Sensors Journal 3 288 [8] Pisani F, Gacemi D, Vasanelli A, Li L, Davies A G, Linfield E, Sirtori C and Todorov Y 2023 Nat. Commun. 14 3914 [9] Hagenmüller D, Schachenmayer J, Schütz S, Genes C and Pupillo G 2017 Phys. Rev. Lett. 119 223601 [10] Orgiu E, George J, Hutchison J A, Devaux E, Dayen J F, Doudin B, Stellacci F, Genet C, Schachenmayer J, Genes C, et al. 2015 Nat. Mater. 14 1123 [11] Hu S Q, Zhao H, Lian C, Liu X B, Guan M X and Meng S 2022 npj Quantum Materials 7 14 [12] Liu X B, Hu S Q, Chen D, Guan M, Chen Q and Meng S 2022 Nano Lett. 22 4800 [13] Zhao W M, Zhu L, Nie Z, Li Q Y, Wang Q W, Dou L G, Hu J G, Xian L, Meng S and Li S C 2022 Nat. Mater. 21 284 [14] Sun Z, Murakami Y, Xuan F, Kaneko T, Golež D and Millis A J 2024 Phys. Rev. Lett. 133 217002 [15] Chen Y J, Cain J D, Stanev T K, Dravid V P and Stern N P 2017 Nat. Photonics 11 431 [16] Galiffi E, et al. 2024 Nature Reviews Materials 9 9 [17] Ginzburg P 2016 Reviews in Physics 1 120 [18] Gilleo M and Geller S 1958 Phys. Rev. 110 73 [19] Cao Y, Yan P, Huebl H, Goennenwein S T and Bauer G E 2015 Phys. Rev. B 91 094423 [20] Yao B, et al. 2019 Commun. Phys. 2 161 [21] Liu C, et al. 2018 Nat. Commun. 9 738 [22] Xu J, Zhong C, Han X, Jin D, Jiang L and Zhang X 2020 Phys. Rev. Lett. 125 237201 [23] Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L and Tang H X 2015 Nat. Commun. 6 8914 [24] Zhu H, Shi H, Tang Z and Tang B 2024 Chin. Phys. B 33 037503 [25] Huebl H, et al. 2013 Phys. Rev. Lett. 111 127003 [26] Zeng Z and Yan P 2025 Phys. Rev. Lett. 134 026701 [27] Cornelissen L, Liu J, Duine R, Youssef J B and Van Wees B 2015 Nat. Phys. 11 1022 [28] Tabuchi Y, et al. 2015 Science 349 405 [29] Xu D, Wang Y P, Li T F and You J Q 2022 Acta Phys. Sin. 71 150302 (in Chinese) [30] Zhu L T, Zhu X Y, Yue Z C, Tu T and Li C F 2025 Chin. Phys. B 34 030302 [31] Berk C, et al. 2019 Nat. Commun. 10 2652 [32] Liu S, et al. 2021 Phys. Rev. Lett. 127 097401 [33] Zhang X, et al. 2014 Phys. Rev. Lett. 113 156401 [34] Li Y, et al. 2019 Phys. Rev. Lett. 123 107701 [35] Wang X, Qiu Q Y, Huang K W and Xiong H 2023 Phys. Rev. A 108 063715 [36] Wang N, Li S Y, Yu L and Zhu A D 2024 Phys. Rev. B 110 144424 [37] Yu W, Yu T and Bauer G E 2020 Phys. Rev. B 102 064416 [38] Lachance-Quirion D, et al. 2019 Applied Physics Express 12 070101 [39] Soykal O O and Flatté M 2010 Phys. Rev. Lett. 104 077202 [40] Grigoryan V L and Xia K 2019 Phys. Rev. B 100 014415 [41] Yu W, Wang J, Yuan H and Xiao J 2019 Phys. Rev. Lett. 123 227201 [42] Rao J W, et al. 2020 Phys. Rev. B 101 064404 [43] Harder M, Yao B, Gui Y and Hu C M 2021 J. Appl. Phys. 129 201101 [44] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q and Hu C M 2019 Phys. Rev. Lett. 123 127202 [45] Yu T, et al. 2020 Phys. Rev. Lett. 124 107202 [46] Yu W, Yu T and Bauer G E 2020 Phys. Rev. B 102 064416 [47] Zhang X, Bauer G E and Yu T 2020 Phys. Rev. Lett. 125 077203 [48] Rao J, Wang Y P, Chen Z, Yao B, Zhao K and Wei C, Wang C, Li R, Bai L and Lu W 2025 Phys. Rev. Lett. 135 066704 [49] Zhang C, Rao J, Wang C, Chen Z, Zhao K, Yao B, Xu X G and Lu W 2023 Phys. Rev. A 20 024074 [50] Chumak A, Melkov G, Demidov V, Dzyapko O, Safonov V and Demokritov S 2009 Phys. Rev. Lett. 102 187205 [51] Alekseev S, Dizhur S, Polzikova N, Luzanov V, Raevskiy A, Orlov A, Kotov V and Nikitov S 2020 Appl. Phys. Lett. 117 072408 [52] Wang Y P, et al. 2018 Phys. Rev. Lett. 120 057202 [53] Zhang X, Zhu N, Zou C L and Tang H X 2016 Phys. Rev. Lett. 117 123605 [54] Nowik-Boltyk P, Borisenko I, Demidov V and Demokritov S 2019 Ukrainian Journal of Physics 64 938 [55] Hula T, et al. 2022 Appl. Phys. Lett. 121 112404 [56] Zhang X, et al. 2016 Science Advances 2 e1501286 [57] Rao J, Yao B, Wang C, Zhang C, Yu T and Lu W 2023 Phys. Rev. Lett. 130 046705 [58] Lyons T P, et al. 2023 Phys. Rev. Lett. 131 196701 [59] Kurkin M, et al. 2008 Phys. Rev. B 78 134430 [60] Shi J, et al. 2023 Advanced Science 10 2205903 [61] Harder M and Hu C M 2018 Solid State Phys. 69 47 [62] Jäckl M, et al. 2017 Phys. Rev. X 7 021009 [63] Zhou L, et al. 2024 Nat. Commun. 15 7782 [64] Boventer I, et al. 2020 Phys. Rev. Research 2 013154 [65] Boventer I, et al. 2019 New J. Phys. 21 125001 [66] Demokritov S O, et al. 2006 Nature 443 430 [67] Borisenko I, et al. 2020 Nat. Commun. 11 1691 [68] Xu G T, et al. 2023 Phys. Rev. Lett. 131 243601 [69] Shen R C, et al. 2021 Phys. Rev. Lett. 127 183202 [70] Wang C, et al. 2024 Nat. Phys. 20 1139 [71] Lee O, et al. 2023 Phys. Rev. Lett. 130 046703 [72] Zhang Y H 2024 Critical Coupling and Floquet in Cavity Magnonics Master’s thesis University of Manitoba Winnipeg, Manitoba, Canada [73] Oka T and Kitamura S 2019 Annual Review of Condensed Matter Physics 10 387 [74] Autler S H and Townes C H 1955 Phys. Rev. 100 703 [75] Anisimov P M, Dowling J P and Sanders B C 2011 Phys. Rev. Lett. 107 163604 [76] Wang Y P, et al. 2016 Phys. Rev. B 94 224410 [77] Walker L R 1957 Phys. Rev. 105 390 [78] Yao X, et al. 2023 Phys. Rev. B 108 134427 [79] Abdulrazak T, Liu X, Jin Z, Cao Y and Yan P 2024 Chin. Phys. B 33 087503 [80] Zhang C, et al. 2024 Appl. Phys. Lett. 125 052401 [81] Zhou Z W, et al. 2021 J. Magn. Magn. Mater. 534 168046 [82] Heins C, Kákay A, Kim J V, Hlawacek G, Fassbender J, Schultheiss K and Schultheiss H 2025 arXiv preprint arXiv:2501.05080 [83] Wang Z, Yuan H, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202 [84] Sun J, Shi S and Wang J 2022 Advanced Engineering Materials 24 2101245 [85] Qiu H, et al. 2023 Advanced Science 10 2300512 [86] Liu Y, et al. 2024 Phys. Rev. B 109 174412 [87] Liang X, Cao Y, Yan P and Zhou Y 2024 Nano Lett. 24 6730 [88] Liu X, et al. 2024 Phys. Rev. B 110 184413 [89] Xiong H 2023 Fundamental Research 3 8 [90] Liu Z X, Peng J and Xiong H 2023 Phys. Rev. A 107 053708 [91] Wang X, Huang K W, Qiu Q Y and Xiong H 2023 Chaos, Solitons & Fractals 176 114137 [92] Liu Z X and Li Y Q 2022 Photonics Research 10 2786 [93] Liu Z X 2024 Appl. Phys. Lett. 124 032403 [94] Dembowski C, et al. 2001 Phys. Rev. Lett. 86 787 [95] Miri M A and Alu A 2019 Science 363 eaar7709 [96] Pishehvar A, et al. 2025 Phys. Rev. A 23 024053 [97] Chen Z, Rao J, Zhao K, Yang F, Wang C, Yao B and Lu W 2024 Appl. Phys. Lett. 125 042403 [98] Zhao K, et al. 2025 AIP Advances 15 015015 [99] Crescini N, et al. 2020 Appl. Phys. Lett. 117 144001 [100] Yao B, et al. 2023 Phys. Rev. Lett. 130 146702 [101] Rao J, et al. 2023 Phys. Rev. Lett. 131 106702 [102] Wang Z Y, et al. 2023 Appl. Phys. Lett. 123 153904 [103] Hou J T, et al. 2024 Appl. Phys. Lett. 124 072401 [104] Yu G, et al. 2017 Nano Lett. 17 261 [105] Peng J, Liu Z X, Yu Y F and Xiong H 2024 Phys. Rev. A 110 053704 [106] Wang M, et al. 2019 IEEE Photonics Journal 11 1 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|