|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure |
| Yan Yan(闫岩)1,†, Chengao Jiang(蒋成澳)1, Wen Gao(高稳)1, Rui Chen(陈蕊)1, Xiaodong Yang(杨晓东)1, Runru Liu(刘润茹)1, Lihua Yang(杨丽华)2, and Lili Wang(王丽丽)1 |
1 School of Materials Science and Engineering, Changchun University, Changchun 130022, China; 2 Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China |
|
|
|
|
Abstract The particle swarm optimization algorithm has predicted a series of binary cadmium hydrides that could be dynamically stable at pressures between 100 GPa and 300 GPa. These low-energy phases are composed of both Cd atoms and H$_{2}$ molecules. Here, we propose a hitherto unknown metastable Cmcm-CdH$_{6}$ phase, consisting of one-dimensional zigzag graphite-like hydrogenic H$_{6}$ chains, quasimolecular H$_{2}$ units and Cd atoms, which is metallic above 290 GPa. Due to H$_{2} \sigma \to {\rm Cd}$ d donation and Cd $\rm d \to H_{2} \sigma^{\ast } $ back-donation, the electrons occupy antibonding orbitals for both types of hydrogen atoms. This results in weakened chemical bonds in the Cmcm-CdH$_{6}$ phase via a Kubas-like mechanism, promoting the emergence of high superconductivity, which is estimated to be up to $\sim 60 $ K at 290 GPa. This work will inspire the search for superconductivity in materials based on group IIB hydrides under pressure.
|
Received: 24 February 2025
Revised: 22 April 2025
Accepted manuscript online: 15 May 2025
|
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
| |
74.62.Fj
|
(Effects of pressure)
|
| |
63.20.kd
|
(Phonon-electron interactions)
|
| |
62.20.-x
|
(Mechanical properties of solids)
|
|
| Fund: Project supported by the Jilin Provincial Natural Science Foundation (Grant No. 20230101183JC) and the Center for Computational Research at Jilin Province. |
Corresponding Authors:
Yan Yan
E-mail: yanyan1110@126.com
|
Cite this article:
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽) A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure 2025 Chin. Phys. B 34 086201
|
[1] Cui W W, Bi T G, Shi J M, Li Y W, Liu H Y, Zurek E and Hemley R J 2020 Phys. Rev. B 101 134504 [2] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73 [3] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 [4] Liang XW,Wei X D, Zurek E, Bergara A, Li P F, Gao G Y and Tian Y J 2024 Matter Radiat. Extrem. 9 018401 [5] Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Yu X H, Zhao Y S, Wang H B, Liu G T and Ma Y M 2022 Phys. Rev. Lett. 129 269901 [6] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R and Eremets M I 2020 Phys. Rep. 856 1 [7] Li Y H, Zhou P, Ding C, Lu Q, Wang X M and Sun J 2024 Chin. Phys. B 33 106102 [8] Cui W W and Li Y W 2019 Chin. Phys. B 28 107104 [9] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748 [10] Hilleke K P and Zurek E 2022 J. Appl. Phys. 131 070901 [11] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002 [12] Sun W G, Chen B L, Li X F, Peng F, Hermann A and Lu C 2023 Phys. Rev. B 107 214511 [13] Yan X Z, Zhou X Z, Liu C F, Xu Y L, Huang Y B, Sheng X W and Chen Y M 2024 Chin. Phys. B 33 086301 [14] Gao G, Wang L, Li M, Zhang J, Howie R T, Gregoryanz E, Struzhkin V V, Wang L and Tse J S 2021 Mater. Today Phys. 21 100546 [15] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys. 12 835 [16] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001 [17] Liu H Y, Naumov I I, Hoffmann R, Ashcroft NWand Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 [18] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463 [19] Jeon H, Wang C, Liu S, Bok J M, Bang Y and Cho J H 2022 New J. Phys. 24 083048 [20] Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B S, Long Y W, Yu R C, Wang L H, Ye M Y, Zhang Z S, Prakapenka V B, Chariton S, Ginsberg P A, Bass J, Yuan S H, Liu H Z and Jin C Q 2022 Nat. Commun. 13 2863 [21] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Mater. Today 33 36 [22] Snider E, Dasenbrock-Gammon N, McBride R, Wang X Y, Meyers N, Lawler K V, Zurek E, Salamat A and Dias R P 2021 Phys. Rev. Lett. 126 117003 [23] Troyan I A, Semenok D V, Kvashnin A G, Sadakov A V, Sobolevskiy O A, Pudalov V M, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Bergara A, Errea I, Bianco R, Calandra M, Mauri F, Monacelli L, Akashi R and Oganov A R 2021 Adv. Mater. 33 2006832 [24] Kong P P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E and Eremets M I 2021 Nat. Commun. 12 5075 [25] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 [26] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [27] Kresse G and Fu J 1996 Phys. Rev. B 54 11169 [28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [29] Blöchl P E 1994 Phys. Rev. B 50 17953 [30] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [31] Dronskowski R and Blöchl P E 1993 J. Phys. Chem. 97 8617 [32] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2013 J. Comput. Chem. 34 2557 [33] Gonze X and Lee C 1997 Phys. Rev. B 55 10355 [34] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [35] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys.: Condens. Matter. 21 395502 [36] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616 [37] Barbaras G D, Dillard C, Finholt A E, Wartik T, Wilzbach K E and Schlesinger H I 1951 J. Am. Chem. Soc. 73 4585 [38] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 [39] Hill R 1952 Proc. Phys. Soc. A Lond. 65 349 [40] Kubas G J, Ryan R R, Swanson B I, Vergamini P J and Wasserman H J 1984 J. Am. Chem. Soc. 106 451 [41] Ye X, Zarifi N, Zurek E, Hoffmann R and Ashcroft N W 2018 J. Phys. Chem. C 122 6298 [42] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y M 2017 Phys. Rev. Lett. 119 107001 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|