Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086201    DOI: 10.1088/1674-1056/add902
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure

Yan Yan(闫岩)1,†, Chengao Jiang(蒋成澳)1, Wen Gao(高稳)1, Rui Chen(陈蕊)1, Xiaodong Yang(杨晓东)1, Runru Liu(刘润茹)1, Lihua Yang(杨丽华)2, and Lili Wang(王丽丽)1
1 School of Materials Science and Engineering, Changchun University, Changchun 130022, China;
2 Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
Abstract  The particle swarm optimization algorithm has predicted a series of binary cadmium hydrides that could be dynamically stable at pressures between 100 GPa and 300 GPa. These low-energy phases are composed of both Cd atoms and H$_{2}$ molecules. Here, we propose a hitherto unknown metastable Cmcm-CdH$_{6}$ phase, consisting of one-dimensional zigzag graphite-like hydrogenic H$_{6}$ chains, quasimolecular H$_{2}$ units and Cd atoms, which is metallic above 290 GPa. Due to H$_{2} \sigma \to {\rm Cd}$ d donation and Cd $\rm d \to H_{2} \sigma^{\ast } $ back-donation, the electrons occupy antibonding orbitals for both types of hydrogen atoms. This results in weakened chemical bonds in the Cmcm-CdH$_{6}$ phase via a Kubas-like mechanism, promoting the emergence of high superconductivity, which is estimated to be up to $\sim 60 $ K at 290 GPa. This work will inspire the search for superconductivity in materials based on group IIB hydrides under pressure.
Keywords:  high pressure      hydrogen-rich compounds      superconductivity  
Received:  24 February 2025      Revised:  22 April 2025      Accepted manuscript online:  15 May 2025
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  74.62.Fj (Effects of pressure)  
  63.20.kd (Phonon-electron interactions)  
  62.20.-x (Mechanical properties of solids)  
Fund: Project supported by the Jilin Provincial Natural Science Foundation (Grant No. 20230101183JC) and the Center for Computational Research at Jilin Province.
Corresponding Authors:  Yan Yan     E-mail:  yanyan1110@126.com

Cite this article: 

Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽) A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure 2025 Chin. Phys. B 34 086201

[1] Cui W W, Bi T G, Shi J M, Li Y W, Liu H Y, Zurek E and Hemley R J 2020 Phys. Rev. B 101 134504
[2] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[3] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[4] Liang XW,Wei X D, Zurek E, Bergara A, Li P F, Gao G Y and Tian Y J 2024 Matter Radiat. Extrem. 9 018401
[5] Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Yu X H, Zhao Y S, Wang H B, Liu G T and Ma Y M 2022 Phys. Rev. Lett. 129 269901
[6] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R and Eremets M I 2020 Phys. Rep. 856 1
[7] Li Y H, Zhou P, Ding C, Lu Q, Wang X M and Sun J 2024 Chin. Phys. B 33 106102
[8] Cui W W and Li Y W 2019 Chin. Phys. B 28 107104
[9] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[10] Hilleke K P and Zurek E 2022 J. Appl. Phys. 131 070901
[11] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[12] Sun W G, Chen B L, Li X F, Peng F, Hermann A and Lu C 2023 Phys. Rev. B 107 214511
[13] Yan X Z, Zhou X Z, Liu C F, Xu Y L, Huang Y B, Sheng X W and Chen Y M 2024 Chin. Phys. B 33 086301
[14] Gao G, Wang L, Li M, Zhang J, Howie R T, Gregoryanz E, Struzhkin V V, Wang L and Tse J S 2021 Mater. Today Phys. 21 100546
[15] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys. 12 835
[16] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[17] Liu H Y, Naumov I I, Hoffmann R, Ashcroft NWand Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[18] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
[19] Jeon H, Wang C, Liu S, Bok J M, Bang Y and Cho J H 2022 New J. Phys. 24 083048
[20] Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B S, Long Y W, Yu R C, Wang L H, Ye M Y, Zhang Z S, Prakapenka V B, Chariton S, Ginsberg P A, Bass J, Yuan S H, Liu H Z and Jin C Q 2022 Nat. Commun. 13 2863
[21] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Mater. Today 33 36
[22] Snider E, Dasenbrock-Gammon N, McBride R, Wang X Y, Meyers N, Lawler K V, Zurek E, Salamat A and Dias R P 2021 Phys. Rev. Lett. 126 117003
[23] Troyan I A, Semenok D V, Kvashnin A G, Sadakov A V, Sobolevskiy O A, Pudalov V M, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Bergara A, Errea I, Bianco R, Calandra M, Mauri F, Monacelli L, Akashi R and Oganov A R 2021 Adv. Mater. 33 2006832
[24] Kong P P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E and Eremets M I 2021 Nat. Commun. 12 5075
[25] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[26] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[27] Kresse G and Fu J 1996 Phys. Rev. B 54 11169
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Blöchl P E 1994 Phys. Rev. B 50 17953
[30] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[31] Dronskowski R and Blöchl P E 1993 J. Phys. Chem. 97 8617
[32] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2013 J. Comput. Chem. 34 2557
[33] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[34] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[35] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys.: Condens. Matter. 21 395502
[36] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[37] Barbaras G D, Dillard C, Finholt A E, Wartik T, Wilzbach K E and Schlesinger H I 1951 J. Am. Chem. Soc. 73 4585
[38] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[39] Hill R 1952 Proc. Phys. Soc. A Lond. 65 349
[40] Kubas G J, Ryan R R, Swanson B I, Vergamini P J and Wasserman H J 1984 J. Am. Chem. Soc. 106 451
[41] Ye X, Zarifi N, Zurek E, Hoffmann R and Ashcroft N W 2018 J. Phys. Chem. C 122 6298
[42] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y M 2017 Phys. Rev. Lett. 119 107001
[1] Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2
Wenqian Tu(涂文倩), Run Lv(吕润), Dingfu Shao(邵定夫), Yuping Sun(孙玉平), and Wenjian Lu(鲁文建). Chin. Phys. B, 2025, 34(9): 097103.
[2] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[3] Ground state of electron-doped t-t0-J model on cylinders: An investigation of finite size and boundary condition effects
Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普). Chin. Phys. B, 2025, 34(8): 087105.
[4] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[5] Magnetotransport properties of two-dimensional tellurium at high pressure
Huiyuan Guo(郭慧圆), Jialiang Jiang(姜家梁), Boyu Zou(邹博宇), Jie Cui(崔杰), Qinglin Wang(王庆林), Haiwa Zhang(张海娃), Guangyu Wang(王光宇), Guozhao Zhang(张国召), Kai Wang(王凯), Yinwei Li(李印威), and Cailong Liu(刘才龙). Chin. Phys. B, 2025, 34(8): 087301.
[6] High pressure synthesis, crystal structure and electronic properties of Ba3Hf(Se1-xTex)5 (x = 0-1)
Zelong Wang(王泽龙), Guodong Wang(王国东), Wenmin Li(李文敏), Runteng Chen(陈润滕), Lei Duan(段磊), Jianfa Zhao(赵建发), Zheng Deng(邓正), Jianfeng Zhang(张建丰), Tingjiang Yan(颜廷江), Jun Zhang(张俊), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086101.
[7] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[8] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[9] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[10] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[11] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[12] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[13] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[14] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[15] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
No Suggested Reading articles found!