Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040305    DOI: 10.1088/1674-1056/22/4/040305
GENERAL Prev   Next  

Large payload quantum steganography based on cavity quantum electrodynamics

Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍)
College of Information & Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
Abstract  A large payload quantum steganography protocol based on cavity quantum electrodynamics (QED) is presented in the paper, which effectively uses the evolution law of atom in cavity QED. The protocol builds up hidden channel to transmit secret messages using entanglement swapping between one GHZ state and one Bell state in cavity QED together with the Hadamard operation. The quantum steganography protocol is insensitive to cavity decay and thermal field. The capacity, imperceptibility and security against eavesdropping are analyzed in detail in the protocol. It turns out that the protocol not only has good imperceptibility but also possesses good security against eavesdropping. In addition, its capacity of hidden channel achieves five bits, larger than most of those previous quantum steganography protocols.
Keywords:  quantum steganography      hidden capacity      entanglement swapping      Hadamard operation      cavity QED  
Received:  07 August 2012      Revised:  20 October 2012      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60972071) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ12F02012 and Y6100421).
Corresponding Authors:  Ye Tian-Yu     E-mail:  flystu008@yahoo.com.cn

Cite this article: 

Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍) Large payload quantum steganography based on cavity quantum electrodynamics 2013 Chin. Phys. B 22 040305

[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Computers, Systems and Signal Processing, December 9-12, 1984, Bangalore, India (New York: IEEE) p. 175
[2] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[3] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357
[4] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[5] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[6] Chen X B, Wang T Y, Du J Z, Wen Q Y and Zhu F C 2008 Int. J. Quantum Inf. 6 543
[7] Chen X B, Wen Q Y, Guo F Z, Sun Y, Xu G and Zhu F C 2008 Int. J. Quantum Inf. 6 899
[8] Gu B, Huang Y G, Fang X and Zhang C Y 2011Chin. Phys. B 20 100309
[9] Huang W, Wen Q Y, Jia H Y, Qin S J and Gao F 2012 Chin. Phys. B 21 100308
[10] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[11] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[12] Yang Y G, Gao W F and Wen Q Y 2010 Chin. Phys. B 19 050306
[13] Zhu Z C, Zhang Y Q and Fu A M 2012 Chin. Phys. B 21 010307
[14] Chen X B, Niu X X, Zhou X J and Yang Y X 2013 Quantum Inf. Process. 12 365
[15] Terhal B M, DiVincenzo D P and Leung D W 2001 Phys. Rev. Lett. 86 5807
[16] Eggeling T and Werner R F 2002 Phys. Rev. Lett. 89 097905
[17] Gea-Banacloche J 2002 J. Math. Phys. 43 4531
[18] Worley III G G 2004 arXiv: ph/0401041v2
[19] Martin K 2007 IH2007, LNCS 4567 32
[20] Liao X, Wen Q Y, Sun Y and Zhang J 2010 J. Syst. Software 83 1801
[21] Qu Z G, Chen X B, Zhou X J, Niu X X and Yang Y X 2010 Opt. Commun. 283 4782
[22] Qu Z G, Chen X B, Luo M X, Niu X X and Yang Y X 2011 Opt. Commun. 284 2075
[23] Shan C J, Liu J B, Chen T, Liu T K, Huang Y X and Li H 2010 Int. J. Theor. Phys. 49 334
[24] Zheng S B 2003 Phys. Rev. A 68 035801
[25] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[1] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[2] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[3] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[4] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[5] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[6] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[7] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[8] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[9] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[10] An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension
Gao Gan (高干). Chin. Phys. B, 2015, 24(8): 080305.
[11] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[12] A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states
Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Wang Lian-Hai (王连海), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义先). Chin. Phys. B, 2015, 24(5): 050306.
[13] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
[14] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[15] Steganalysis and improvement of a quantum steganography protocol via GHZ4 state
Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义光). Chin. Phys. B, 2013, 22(6): 060307.
No Suggested Reading articles found!