ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity |
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志) |
Department of Physics, Fuzhou University, Fuzhou 350116, China |
|
|
Abstract We investigate the effect of the dipole-dipole interaction (DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom-cavity system's nonlinear Jaynes-Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication.
|
Received: 08 January 2016
Revised: 14 April 2016
Accepted manuscript online:
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
32.80.Ee
|
(Rydberg states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305037, 11347114, and 11374054) and the Natural Science Foundation of Fujian Province, China (Grant No. 2013J01012). |
Corresponding Authors:
Huai-Zhi Wu
E-mail: huaizhi.wu@fzu.edu.cn
|
Cite this article:
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志) Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity 2016 Chin. Phys. B 25 104202
|
[1] |
Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
|
[2] |
Campbell S and Paternostro M 2009 Phys. Rev. A 79 032314
|
[3] |
Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
|
[4] |
Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
|
[5] |
Peng J S and Li G X 1993 Phys. Rev. A 47 4212
|
[6] |
Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[7] |
Goldstein E V and Meystre P 1997 Phys. Rev. A 56 5135
|
[8] |
Nicolosi S, Napoli A, Messina A and Petruccione F 2004 Phys. Rev. A 70 022511
|
[9] |
Chen Q H, Liu T, Zheng Y Y and Wang K L 2010 Phys. Rev. A 82 053841
|
[10] |
An N B, Kim J and Kim K 2011 Phys. Rev. A 84 022329
|
[11] |
Huang Y G, Chen G, Jin C J, Liu W M and Wang X H 2012 Phys. Rev. A 85 053827
|
[12] |
Zhang Y Q, Tan L and Barker P 2014 Phys. Rev. A 89 043838
|
[13] |
Dicke R H 1954 Phys. Rev. 93 99
|
[14] |
Gross M and Haroche S 1982 Phys. Rep. 93 301
|
[15] |
Bux S, Gnahm C, Maier R A W, Zimmermann C and Courteille P W 2011 Phys. Rev. Lett. 106 203601
|
[16] |
Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J and Thompson J K 2012 Nature 484 78
|
[17] |
Keßer H, Klinder J, Wolke M and Hemmerich A 2014 Phys. Rev. Lett. 113 070404
|
[18] |
Reimann R, Alt W, Kampschulte T, Macha T, Ratschbacher L, Thau N, Yoon S and Meschede D 2015 Phys. Rev. Lett. 114 023601
|
[19] |
Casabone B, Friebe K, Brandstäter B, Schüpert K, Blatt R and Northup T E 2015 Phys. Rev. Lett. 114 023602
|
[20] |
Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
|
[21] |
Kimble H J 2008 Nature 453 1023
|
[22] |
Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209
|
[23] |
Imamoglu A, Schmidt H, Woods G and Deutsch M 1997 Phys. Rev. Lett. 79 1467
|
[24] |
Kubanek A, Ourjoumtsev A, Schuster I, Koch M, Pinkse P W H, Murr K and Rempe G 2008 Phys. Rev. Lett. 101 203602
|
[25] |
Faraon A, Majumdar A and Vučković J 2010 Phys. Rev. A 81 033838
|
[26] |
Shi T, Fan S F and Sun C P 2011 Phys. Rev. A 84 063803
|
[27] |
Majumdar A, Bajcsy M and Vučković J 2012 Phys. Rev. A 85 041801
|
[28] |
Wu H, Yang Z B and Zheng S B 2013 Phys. Rev. A 88 043816
|
[29] |
Zhang W, Yu Z Y, Liu Y M and Peng Y W 2014 Phys. Rev. A 89 043832
|
[30] |
Li J H, Yu R and Wu Y 2015 Phys. Rev. A 92 053837
|
[31] |
Müler K, Rundquist A, Fischer K A, Sarmiento T, Lagoudakis K G, Kelaita Y A, Muñz C S, Valle E D, Laussy F P, and Vučković J 2015 Phys. Rev. Lett. 114 233601
|
[32] |
Guo Y J and Nie W J 2015 Chin. Phys. B 24 094205
|
[33] |
Huang W, Guo G C and Zou X B 2015 Chin. Phys. B 24 064207
|
[34] |
Li J, Yu R, Wang W, Ding C and Wu Y 2015 Opt. Soc. Am. B 32 1660
|
[35] |
Weimer H and Mahler G 2007 Phys. Rev. A 76 053819
|
[36] |
Dimer F, Estienne B, Parkins A S and Carmichael H J 2007 Phys. Rev. A 75 013804
|
[37] |
Kastoryano M J, Reiter F and Sørensen A S 2011 Phys. Rev. Lett. 106 090502
|
[38] |
Kronwald A, Ludwig M and Marquardt F 2013 Phys. Rev. A 87 013847
|
[39] |
Schöleber D W, Gättner M, and Evers J 2014 Phys. Rev. A 89 033421
|
[40] |
Guerlin C, Brion E, Esslinger T and Mømer K 2010 Phys. Rev. A 82 053832
|
[41] |
Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788
|
[42] |
Meystre P and Sargent III M 1990 Elements of Quantum Optics (Berlin: Springer)
|
[43] |
Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|