|
|
Efficient generation of two-dimensional cluster states in cavity QED |
Zhang Gang (张刚)a, Zhou Jian (周建)b c, Xue Zheng-Yuan (薛正远)c |
a Machinery and Electronics Engineering Institute, West Anhui University, Lu'an 237012, China; b Anhui Xinhua University, Hefei 230088, China; c Laboratory of Quantum Information Technology and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China |
|
|
Abstract We propose a scheme to achieve a kind of nontrivial multipartite pair-wise controlled phase operation in a cavity QED setup. The operation implemented is of geometrical nature and not sensitive to the thermal state of the cavity. In particular, we are manage to avoid the conventional dispersive coupling so that high speed gate operation is achieved which is very important in view of decoherence. We show that this multipartite pair-wise controlled phase operation makes the generation of two-dimensional cluster states very efficient.
|
Received: 25 July 2012
Revised: 18 October 2012
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Fundamental Research Program of China (Grant No. 2013CB921804), the National Natural Science Foundation of China (Grant No. 11004065), the Natural Science Foundation of Guangdong Province of China (Grant Nos. 10451063101006312 and S2011040000403), and the Funds of the Education Department of Anhui Province of China (Grant Nos. KJ2010A323, 2010SQRL187, and KJ2012B075). |
Corresponding Authors:
Xue Zheng-Yuan
E-mail: xuezhengyuan@yahoo.com.cn
|
Cite this article:
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远) Efficient generation of two-dimensional cluster states in cavity QED 2013 Chin. Phys. B 22 040307
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[3] |
Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
|
[4] |
Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
|
[5] |
Dong P, Xue Z Y, Yang M and Cao Z L 2006 Phys. Rev. A 73 033818
|
[6] |
Lin X M, Xue P, Chen M Y, Chen Z H and Li X H 2006 Phys. Rev. A 74 052339
|
[7] |
Zhang X L, Gao K L and Feng M 2007 Phys. Rev. A 75 034308
|
[8] |
Gont.a D, Radtke T and Fritzsche S 2009 Phys. Rev. A 79 062319
|
[9] |
Ye L 2007 Eur. Phys. J. D 41 413
|
[10] |
Ye L and Guo G C 2007 Phys. Lett. A 361 460
|
[11] |
Song J, Xia Y and Song H S 2010 Appl. Phys. Lett. 96 071102
|
[12] |
Shi Z C, Xia Y, Song J and Song H S 2012 Eur. Phys. J. D 66 11
|
[13] |
Dong P, Zhang L H and Cao Z L 2008 Chin. Phys. B 17 1979
|
[14] |
Zou C L, Gao G J, Lu Y, Li D C, Yang M and Cao Z L 2008 Chin. Phys. B 17 1174
|
[15] |
Zhang Z M and Li W B 2007 Chin. Phys. Lett. 24 344
|
[16] |
Wu H Z, Yang Z B and Zheng S B 2007 Chin. Phys. Lett. 24 3055
|
[17] |
Du G, Lai B H, Yu Y F and Zhang Z M 2009 Chin. Phys. Lett. 26 104201
|
[18] |
Xue Z Y, Zhang G, Dong P, Yi Y M and Cao Z L 2006 Eur. Phys. J. B 52 333
|
[19] |
Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
|
[20] |
Zheng X H and Cao Z L 2006 J. Phys.: Condens. Matter 18 L599
|
[21] |
Zhang F Y, Pei P and Song H S 2010 Physica B 405 3334
|
[22] |
Song K H 2009 Chin. Phys. Lett. 26 120302
|
[23] |
Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
|
[24] |
Ai L Y, Shi Y L and Zhang Z M 2011 Chin. Phys. B 20 100303
|
[25] |
Chen Q, Feng M, Du J F and Hai W H 2011 Chin. Phys. B 20 010308
|
[26] |
Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
|
[27] |
Shor P W 1995 Phys. Rev. A 52 R2493
|
[28] |
Steane A M 1996 Phys. Rev. Lett. 77 793
|
[29] |
Grover L K 1998 Phys. Rev. Lett. 80 4329
|
[30] |
Šašura M and Buzek V 2001 Phys. Rev. A 64 012305
|
[31] |
Braunstein S L, Buzek V and Hillery M 2001 Phys. Rev. A 63 052313
|
[32] |
Yang C P, Liu Y X and Nori F 2010 Phys. Rev. A 81 062323
|
[33] |
Song K H, Zhao Y J, Shi Z G, Xiang S H and Chen X W 2012 Eur. Phys. J. D 66 1
|
[34] |
Solano E, de Matos Filho R L, and Zagury N 2001 Phys. Rev. Lett. 87 060402
|
[35] |
Zheng S B 2003 Phys. Rev. A 68 035801
|
[36] |
Mmer K and Sensen A 1999 Phys. Rev. Lett. 82 1835
|
[37] |
Sensen A and M?mer K 1999 Phys. Rev. Lett. 82 1971
|
[38] |
Sensen A and Mmer K 2000 Phys. Rev. A 62 022311
|
[39] |
Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev. Lett. 94 100502
|
[40] |
Xue Z Y and Wang Z D 2007 Phys. Rev. A 75 064303
|
[41] |
Xue Z Y 2012 Quantum Inf. Process. 11 1381
|
[42] |
Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
|
[43] |
Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovi B, Langer C, Rosenband T and Wineland D J 2003 Nature. 422 412
|
[44] |
Zeng B, Zhou D L and You L 2005 Phy. Rev. Lett. 95 110502
|
[45] |
Raimond J M, Bruneand M and Haroche S 2001 Rev. Mod. Phys. 73 565
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|