|
|
Mesoscopic entangled coherent states implemented with a circuit quantum electrodynamics system |
Zhao Ying-Yan (赵英燕), Jiang Nian-Quan (姜年权) |
Department of Physics, Wenzhou University, Wenzhou 325035, China |
|
|
Abstract We show a scheme to generate entangled coherent states in a circuit quantum electrodynamics system, which consists of a nanomechanical resonator, a superconducting Cooper-pair box (CPB), and a superconducting transmission line resonator. In the system, the CPB plays the role of nonlinear medium and can be conveniently controlled by a gate voltage including direct-current and alternating-current components. The scheme provides a powerful tool for preparing the multipartite mesoscopic entangled coherent states.
|
Received: 21 September 2012
Revised: 03 December 2012
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
85.25.-j
|
(Superconducting devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10947017/A05) and the Graduates' Innovative Scientific Research Project of Zhejiang Province, China (Grant No. 2011831). |
Corresponding Authors:
Jiang Nian-Quan
E-mail: jiangnq@wzu.edu.cn
|
Cite this article:
Zhao Ying-Yan (赵英燕), Jiang Nian-Quan (姜年权) Mesoscopic entangled coherent states implemented with a circuit quantum electrodynamics system 2013 Chin. Phys. B 22 050308
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)
|
[3] |
Rice D A, Jaeger G and Sanders B C 2000 Phys. Rev. A 62 012101
|
[4] |
Gilchrist A, Nemoto K, Munro W J, Ralph T, Glancy S, Braunstein S L and Milburn G 2004 J. Opt. B 6 S828
|
[5] |
Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
|
[6] |
Liao J Q and Kuang L M 2006 Phys. Lett. A 358 115
|
[7] |
Lu H X, Zhao B, Zhao M S, Guo J, Chen Z B and Zhang Y D 2002 J. Opt. B 4 411
|
[8] |
Gao G L, Song F Q, Huang S S, Wang H, Yuan X Z, Wang M F and Jiang N Q 2012 Chin. Phys. B 21 044209
|
[9] |
Liao Q H, Fang G Y, Wang J C, Ahmad M A and Liu S T 2011 Chin. Phys. Lett. 6 060307
|
[10] |
Chen C Y, Feng M and Gao K L 2006 Phys. Rev. A 73 034305
|
[11] |
Ma S S, Chen M F and Jiang X P 2011 Chin. Phys. B 21 120308
|
[12] |
Zagoskin A M, Ilichev E, McCutcheon M W, Jeff F Y and Franco N 2008 Phys. Rev. Lett. 101 253602
|
[13] |
Marek P, Paternostro M and Kim M S 2006 Phys. Rev. A 74 032311
|
[14] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[15] |
Marthaler M, Schon G and Shnirman A 2008 Phys. Rev. Lett. 101 147001
|
[16] |
Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
|
[17] |
Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
|
[18] |
Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
|
[19] |
Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, García-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A and Gross R 2010 Nature 6 772
|
[20] |
Plantenberg J H, de Groot P C, Harmans C J P M and Mooij J E 2007 Nature 447 836
|
[21] |
Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
|
[22] |
Huo W Y and Long G L 2008 Appl. Phys. Lett. 92 133102
|
[23] |
Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602
|
[24] |
Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 445 515
|
[25] |
Moon K and Girvin S M 2005 Phys. Rev. Lett. 95 140504
|
[26] |
Zhou X X and Mizel A 2006 Phys. Rev. Lett. 97 267201
|
[27] |
Rabl P, Shnirman A and Zoller P 2004 Phys. Rev. B 70 205304
|
[28] |
Tian L and Simmonds R W 2006 arXiv: cond-mat/0606787
|
[29] |
Ruskov R, Schwab K and Korotkov A N 2005 Phys. Rev. B 71 235407
|
[30] |
Zhou B Y, Deng L, Duan Y F, Yu L and Li G X 2012 Chin. Phys. B 21 090302
|
[31] |
Zhou J, Fan H Y and Song J 2012 Chin. Phys. B 21 070301
|
[32] |
Zhang B L, Meng X G and Wang J S 2012 Chin. Phys. B 21 030304
|
[33] |
Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
|
[34] |
Jiang N Q, Jing B Q, Zhang Y and Cai G C 2008 Europhys. Lett. 84 14002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|