Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 030304    DOI: 10.1088/1674-1056/28/3/030304
GENERAL Prev   Next  

Plasmon mediated entanglement dynamics of distant quantum dots

Misbah Qurban1,2,3,4, Rabia Tahira1, Guo-Qin Ge(葛国勤)1, Manzoor Ikram1,2
1 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 National Institute of Lasers and Optronics, Nilore, Islamabad 45650, Pakistan;
3 Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan;
4 Department of Physics, Fatima Jinnah Women University, The Mall, Rawalpindi, Pakistan
Abstract  

We investigate the time evolution of entanglement between two quantum dots in an engineered vacuum environment such that a metallic nanoring having a surface plasmon is placed near the quantum dots. Such engineering in environment results in oscillations in entanglement dynamics of the quantum dots systems. With proper adjustment of the separation between the quantum dots, entanglement decay can be stabilized and preserved for longer time than its decay without the surface plasmons interactions.

Keywords:  entanglement production and manipulation      entanglement dynamics      surface plasmon      quantum dots  
Received:  07 August 2018      Revised:  08 January 2019      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274132 and 11550110180).

Corresponding Authors:  Guo-Qin Ge     E-mail:  gqge@hust.edu.cn

Cite this article: 

Misbah Qurban, Rabia Tahira, Guo-Qin Ge(葛国勤), Manzoor Ikram Plasmon mediated entanglement dynamics of distant quantum dots 2019 Chin. Phys. B 28 030304

[1] Nielsen M A and Chuang L I 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press)
[2] Jefferson J H, Ramšak A and Rejec T 2008 J. Phys.: Condens. Matter 20 164206
[3] Ikram M, Li F L and Zubairy M S 2007 Phys. Rev. A 75 062336
[4] Xie M, Wu F, Fu P and Yang G 2015 Quantum Information Processing 14 2077
[5] Schwartz M E K, Martin L, Flurin E, Aron C, Kulkarni M, Tureci E H and Siddiqi I 2016 Phys. Rev. Lett. 116 240503
[6] Shou C and Lai X X 2014 Physics 43 740
[7] Li Y, Ding F and Schmidt O G 2018 Chin. Phys. B 27 020307
[8] Wagenknecht C, Li C M, Reingruber A, Bao X H, Goebei A, Chen Y A, Zhang Q, Chen K and Pan J W 2010 Nat. Photon. 4 549
[9] Poyatos J F, Cirac J I and Zoller P 1996 Phys. Rev. Lett. 77 4728
[10] Lin Y, Gaebler J P, Reiter F, Tan T R, Bowleer R, Sorensen A S, Leibfried D and Wineland D J 2013 Nature 504 415
[11] Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I and Polzik E S 2011 Phys. Rev. Lett. 107 080503
[12] Tudela A G, Cano D M, Moreno E, Moreno L M, Tejedor C and Vidal F J G 2011 Phys. Rev. Lett. 106 020501
[13] Cano D M, Tudela A G, Moreno L M, Vidal L M G, Tejedor C and Moreno E 2011 Phys. Rev. B 84 235306
[14] He Y and Zhu K D 2012 Nanoscale Res. Lett. 7 95
[15] He Y and Zhu K D 2013 Quantum Info. Comput. 13 0324
[16] Ballestero C G, Vidal F J G and Moreno E 2013 New J. Phys. 15 073015
[17] Lee C 2013 New J. Phys. 15 083017
[18] Sanders A W 2006 Nano Lett. 6 1822
[19] Ditlbacher H 2005 Phys. Rev. Lett. 95 257403
[20] Nayak K P 2007 Opt. Express 15 5431
[21] Haroche S and Raimond J M 2006 Exploring the Quantum: Atoms, Cavities, Photons (New York: Oxford University Press)
[22] Atwater H A 2007 Sci. Am. 296 56
[23] Genet C and Ebbesen T W 2007 Nature 445 39
[24] Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2006 Phys. Rev. Lett. 97 053002
[25] Takahara J, Yamagishi S, Taki H, Morimoto A and Kobayashi 1997 Opt. Lett. 22 475
[26] Chang D E, S?rensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
[27] Artuso R D and Bryant G W 2013 Phys. Rev. B 87 125423
[28] Nicolosi S, Napoli A, Messina A and Petruccione F 2004 Phys. Rev. A 70 022511
[29] Tame M S, McEnery K R, Ozdemir S K, Lee J, Maier S A and Kim M S 2013 Nat. Phys. 9 329
[30] Quiroga L and Johnson N F 1999 Phys. Rev. Lett. 83 2270
[31] Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O and Forchel A 2001 Science 291 451
[32] Wang X, Feng M and Sanders B C 2003 Phys. Rev. A 67 022302
[33] Posazhennikova A, Birmuske R, Bruderer M and Belzig W 2012 Phys. Rev. A 88 042302
[34] Chen G Y, Li C M and Chen Y N 2012 Opt. Lett. 37 1337
[35] Lin Z R, Guo G P, Tu T, Li H O, Zou C L, Chen J X, Lu Y H, Ren X F and Guo G C 2010 Phys. Rev. B 82 241401(R)
[36] Zheng S B 2005 Phys. Rev. A 71 062335
[37] Zheng S B and Guo G C 2006 Phys. Rev. A 73 032329
[38] Zheng S B and Guo G C 2006 Phys. Rev. A 73 052328
[39] Zheng S B 2008 Phys. Rev. A 77 044303
[40] Yang W L, Yin Z Q, Xu Z Y, Feng M and Oh C H 2011 Phys. Rev. A 84 043849
[41] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[42] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[43] Qurban M, Ikram M, Ge G and Zubairy M S 2018 J. Phys. B 51 155502
[44] Gomez D E, Vernon K C, Mulvaney P and Davis T J 2010 Nano Lett. 10 274
[45] Liu S D, Yang Z, Liu R P and Li X Y 2011 J. Phys. Chem. C 115 24469
[46] Ropp C, Probst R, Cummins Z, Kumar R, Berglund A J, Ragavan S R, Waks E and Shapiro B 2010 Nano Lett. 10 2525
[47] Chen G, Lambert N, Chou C H, Chen Y N and Nori F 2011 Phys. Rev. B 84 045310
[48] Mar J D, Baumberg J J, Xu X L, Irvine A C and Williams D A 2017 Phys. Rev. B 95 201304
[49] Ostapenko I A, Honig G, Kindel C, Rodt S, Strittmatter A, Hoffman A and Bimberg D 2010 Appl. Phys. Lett. 90 063103
[50] Torma P and Barnes W L 2015 Rep. Prog. Phys. 78 013901
[51] Yang J K 2011 Jpn. J. Appl. Phys. 50 060205
[52] Diniz L O, Marega E, Nunes F D and Borges B H V 2011 J. Opt. 13 115001
[53] Wu Y, Li X, Duan L M, Steel D G and Gammon D 2006 Phys. Rev. Lett. 96 087402
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[13] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[14] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!