Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 100303    DOI: 10.1088/1674-1056/25/10/100303
GENERAL Prev   Next  

A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method

R Pakniat1, M K Tavassoly2,3, M H Zandi1
1 Faculty of Physics, Shahid Bahonar University of Kerman, Kerman, Iran;
2 Faculty of Physics, Atomic and Molecular Group, Yazd University, Yazd, Iran;
3 Research Group of Optics and Photonics, Yazd University, Yazd, Iran
Abstract  We outline a scheme for entanglement swapping based on cavity QED as well as quasi-Bell state measurement (quasi-BSM) methods. The atom-field interaction in the cavity QED method is performed in small and large detuning regimes. We assume two atoms are initially entangled together and, distinctly two cavities are prepared in an entangled coherent-coherent state. In this scheme, we want to transform entanglement to the atom-field system. It is observed that, the fidelities of the swapped entangled state in the quasi-BSM method can be compatible with those obtained in the small and large detuning regimes in the cavity QED method (the condition of this compatibility will be discussed). In addition, in the large detuning regime, the swapped entangled state is obtained by detecting and quasi-BSM approaches. In the continuation, by making use of the atom-field entangled state obtained in both approaches in a large detuning regime, we show that the atomic as well as field states teleportation with complete fidelity can be achieved.
Keywords:  entanglement swapping      quantum teleportation      cavity QED      quasi-Bell state measurement  
Received:  10 March 2016      Revised:  26 May 2016      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Bg (Entanglement production and manipulation)  
  03.67.Hk (Quantum communication)  
Corresponding Authors:  M K Tavassoly     E-mail:  mktavassoly@yazd.ac.ir

Cite this article: 

R Pakniat, M K Tavassoly, M H Zandi A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method 2016 Chin. Phys. B 25 100303

[1] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[2] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[3] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[4] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[5] Yang M, Song W and Cao Z L 2005 Phys. Rev. A 71 034312
[6] Souza A D, Cardoso W B, Avelar A T and Baseia B 2009 Phys. Scr. 80 065009
[7] Qiang W C, Cardoso W B and Zhang X H 2010 Physica A 389 5109
[8] Lin X, Li H C, Yang R C and Huang Z P 2007 Chin. Phys. 16 919
[9] Liao Q H, Fang G Y, Wang Y Y, Ahmad M A and Liu S 2011 Eur. Phys. J. D 61 475
[10] Song T T, Zhang J, Gao F, Wen Q Y and Zhu F C 2009 Chin. Phys. B 18 1333
[11] Li W, Fan M Y and Wang G W 2012 Chin. Phys. B 21 120305
[12] Ye T Y and Jiang L Z 2013 Chin. Phys. B 22 050309
[13] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[14] Lu H and Guo G C 2000 Phys. Lett. A 276 209
[15] Xue Z Y, Yang M, Yi Y M and Cao Z L 2006 Opt. Commun. 258 315
[16] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. lett. 70 1895
[17] Gerry C and Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press)
[18] Barnett S M 2009 Quantum Information (Oxford: Oxford University Press)
[19] Kim Y H, Kulik S P and Shih Y 2001 Phys. Rev. Lett. 86 1370
[20] Ye L and Guo G C 2004 Phys. Rev. A 70 054303
[21] Cardoso W B, Avelar A T, Baseia B and de Almeida N G 2005 Phys. Rev. A 72 045802
[22] Zhong Z R 2008 Chin. Phys. B 17 1614
[23] Zhong Z R 2008 Chin. Phys. Lett. 25 1687
[24] Liu J M and Weng B 2006 Physica A 367 215
[25] dSouza A D, Cardoso W B, Avelar A T and Baseia B 2009 Physica A 388 1331
[26] Lu H 2001 Chin. Phys. Lett. 18 1004
[27] Jiang W X, Fang J X, Zhu S Q and Sha J Q 2007 Chin. Phys. Lett. 24 1144
[28] Dong J and Teng J F 2009 Chin. Phys. Lett. 26 070306
[29] Toor A H and Zubairy M S 1992 Phys. Rev. A 45 4951
[30] Wu C W, Han Y, Li H Y, Deng Z J, Chen P X and Li C Z 2010 Phys. Rev. A 82 014303
[31] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[32] Karimi A and Tavassoly M K 2015 Phys. Scr. 90 015101
[33] Zeng A H and Kuang L M 2005 Phys. Lett. A 338 323
[34] Blythe P J and Varcoe B T H 2006 New J. Phys. 8 231
[35] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13
[36] Karimi A and Tavassoly M K 2015 Commun. Theor. Phys. 64 341
[37] Chakrabarti R and Jenisha B V 2015 Physica A 435 95
[1] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[2] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[3] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[4] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[5] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[6] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[7] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[8] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[9] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[10] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[11] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[12] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[13] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[14] An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension
Gao Gan (高干). Chin. Phys. B, 2015, 24(8): 080305.
[15] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
No Suggested Reading articles found!