Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100305    DOI: 10.1088/1674-1056/ade062
GENERAL Prev   Next  

Computing the ground state solution of Bose-Einstein condensates by an energy-minimizing normalized residual network

Ren-Tao Wu(吴任涛)1, Ji-Dong Gao(高济东)1, Yu-Han Wang(王宇晗)1, Zhen-Wei Deng(邓振威)1, Ming-Jun Li(李明军)2, and Rong-Pei Zhang(张荣培)1,†
1 School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 522000, China;
2 School of Mathematics and Computational Science, Xiangtan University, Xiangtang 411105, China
Abstract  This paper introduces a novel numerical method based on an energy-minimizing normalized residual network (EM-NormResNet) to compute the ground-state solution of Bose-Einstein condensates at zero or low temperatures. Starting from the three-dimensional Gross-Pitaevskii equation (GPE), we reduce it to the 1D and 2D GPEs because of the radial symmetry and cylindrical symmetry. The ground-state solution is formulated by minimizing the energy functional under constraints, which is directly solved using the EM-NormResNet approach. The paper provides detailed solutions for the ground states in 1D, 2D (with radial symmetry), and 3D (with cylindrical symmetry). We use the Thomas-Fermi approximation as the target function to pre-train the neural network. Then, the formal network is trained using the energy minimization method. In contrast to traditional numerical methods, our neural network approach introduces two key innovations: (i) a novel normalization technique designed for high-dimensional systems within an energy-based loss function; (ii) improved training efficiency and model robustness by incorporating gradient stabilization techniques into residual networks. Extensive numerical experiments validate the method's accuracy across different spatial dimensions.
Keywords:  Bose-Einstein condensate      Gross-Pitaevskii equation      energy minimization      normalized residual network  
Received:  19 February 2025      Revised:  17 May 2025      Accepted manuscript online:  04 June 2025
PACS:  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11971411).
Corresponding Authors:  Rong-Pei Zhang     E-mail:  rongpei_zhang@gdut.edu.cn

Cite this article: 

Ren-Tao Wu(吴任涛), Ji-Dong Gao(高济东), Yu-Han Wang(王宇晗), Zhen-Wei Deng(邓振威), Ming-Jun Li(李明军), and Rong-Pei Zhang(张荣培) Computing the ground state solution of Bose-Einstein condensates by an energy-minimizing normalized residual network 2025 Chin. Phys. B 34 100305

[1] Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Meng K T and You L 2017 Science 355 620
[2] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[3] Erdos L, Schlein B and Yau H 2007 Phys. Rev. Lett. 98 040404
[4] Bao W Z and Du Q 2004 SIAM J. Sci. Comput. 25 1674
[5] Gauthier G, Reeves M T, Yu X Q, Bradley A S, Baker M A, Bell T A, Rubinsztein-Dunlop H, Davis M J and Neely T W 2019 Science 364 1264
[6] Shukla P K and Eliasson B 2007 Phys. Rev. Lett. 99 096401
[7] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171
[8] Chiofalo M L, Succi S and Tosi M P 2000 Phys. Rev. E. 62 7438
[9] Danaila I and Kazemi P 2010 SIAM J. Sci. Comput. 32 2447
[10] Danaila I and Protas B 2017 SIAM J. Sci. Comput. 39 B1102
[11] BaoWZ, Chang Z P and Zhao X F 2025 J. Comput. Phys. 520 113486
[12] Ruprecht P A, HollandM J, Burnett K and EdwardsM 1995 Phys. Rev. A. 51 4704
[13] Muruganandam P and Adhikari S K 2002 J. Phys. B 35 2831
[14] Caliari M, Ostermann A, Rainer S and Thalhammer M 2009 J. Comput. Phys. 228 349
[15] Bao W and Tang W 2003 J. Comput. Phys. 187 230
[16] Evrard B, Qu A, Dalibard J and Gerbier F 2021 Science 373 1340
[17] Raissi M, Perdikaris P and Karniadakis G E 2018 J. Comput. Phys. 378 686
[18] Jagtap A D, Kawaguchi K and Karniadakis G E 2020 J. Comput. Phys. 404 109136
[19] Zhang Z, Li J and Liu B 2025 J. Comput. Phys. 521 113561
[20] Tian S, Cao C and Li B 2023 Results Phys. 52 106842
[21] E W and Yu B 2018 Commun. Math. Stat. 6 1
[22] He K, Zhang X, Ren S Q and Sun J 2016 Deep Residual Learning for Image Recognition[C] 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016 Las Vegas, NV, USA, p. 770
[23] Glorot X and Bengio Y 2010 J. Mach. Learn. Res. 9 249
[24] Kingma D P and Ba J L 2014 arXiv:1412.6980v1 [cs.LG]
[25] Tian Y, Zhang Y and Zhang H 2023 Mathematics 11 682
[26] Mukkamala M C and Hein M 2017 arXiv:1706.05507 [cs.LG]
[1] Ground state of SU(3) spin-orbit coupled soft-core Bose gas
Jia Liu(刘佳), Jing Feng(冯婧), Ya-Jun Wang(王雅君), Xiao-Fei Zhang(张晓斐), and Xue-Ying Yang(杨雪滢). Chin. Phys. B, 2025, 34(6): 060301.
[2] Observation of Josephson effect in 23Na spinor Bose-Einstein condensates
Yong Qin(秦永), Xin Wang(王鑫), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(3): 033701.
[3] Observation of momentum-induced broadening of width in narrow Feshbach resonances of ultracold 133Cs atoms
Zhennan Liu(刘震南), Hongxing Zhao(赵宏星), Yunfei Wang(王云飞), Yuqing Li(李玉清), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Peng Li(李鹏), Yongming Fu(付永明), Liantuan Xiao(肖连团), Jie Ma(马杰), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(2): 023701.
[4] Manipulation of gray-ring dark solitons in a two-component Bose gas with tunable soft-core interactions
Qiu-Ling He(何秋玲), Lin-Xue Wang(王林雪), Rui Jin(金瑞), Fang Wang(王芳), Ya-Jun Wang(王雅君), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2025, 34(10): 100306.
[5] Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁). Chin. Phys. B, 2024, 33(6): 060501.
[6] Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(3): 030308.
[7] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[8] Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(10): 100303.
[9] Super-ballistic diffusion in a quasi-periodic non-Hermitian driven system with nonlinear interaction
Jian-Zheng Li(李建政), Guan-Ling Li(李观玲), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2023, 32(9): 096601.
[10] Special breathing structures induced by bright solitons collision in a binary dipolar Bose-Einstein condensates
Gen Zhang(张根), Li-Zheng Lv(吕李政), Peng Gao(高鹏), and Zhan-Ying Yang(杨战营). Chin. Phys. B, 2023, 32(11): 110303.
[11] Mode dynamics of Bose-Einstein condensates in a single-well potential
Yaojun Ying(应耀俊), Lizhen Sun(孙李真), and Haibin Li(李海彬). Chin. Phys. B, 2023, 32(10): 100310.
[12] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[13] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[14] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[15] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
No Suggested Reading articles found!