Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 078701    DOI: 10.1088/1674-1056/adce92
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Impacts of aging on the entrainment capability of the mammalian circadian system

Ji Zhou(周吉) and Ying Li(李莹)†
College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
Abstract  The circadian system of mammals is composed of a hierarchical network of oscillators, including a core clock and peripheral clocks. The core clock receives an external photic signal and transmits it to the peripheral clocks, which, in turn, feed back to the core clock. Aging affects various functions of organisms including the circadian system. Entrainment displays the adaptability of the circadian system to changes in the external environment. However, there is currently no systematic study on the effects of aging on the entrainment capability. To explore the influencing mechanism, we develop a mathematical model of two populations of Goodwin oscillators, which represent the core clock and peripheral clocks. Based on numerical simulations, we conduct a detailed study on the impact of three aging-related factors on the entrainment capability represented by the entrainment range, entrainment time, and entrainment phase. The results indicate that the decrease in the sensitivity of suprachiasmatic nucleus (SCN) to light and the coupling strength from the SCN to the peripheral clocks due to aging increase the phase difference between the core and peripheral clocks, narrow the entrainment range, and prolong the entrainment time. A reduction in the coupling strength within the SCN has little effect on the three aspects mentioned above but increases the entrainment phase. Overall, aging reduces the circadian system's adaptability to the external environment, and the increased entrainment phase may lead to corresponding sleep problems. We also show that modulating the internal coupling strength in the peripheral clocks can mitigate aging effects; this provides an idea for using peripheral clocks to adjust the core clock, while also revealing new insights into the interaction between aging and the elasticity of the circadian system. This mechanism provides theoretical support for treating or alleviating circadian system disorders or sleep problems caused by aging.
Keywords:  circadian system      peripheral clocks      entrainment range      aging  
Received:  31 December 2024      Revised:  23 March 2025      Accepted manuscript online:  21 April 2025
PACS:  87.18.Yt (Circadian rhythms)  
  87.85.Tu (Modeling biomedical systems)  
  87.18.Vf (Systems biology)  
Corresponding Authors:  Ying Li     E-mail:  leeliying@163.com

Cite this article: 

Ji Zhou(周吉) and Ying Li(李莹) Impacts of aging on the entrainment capability of the mammalian circadian system 2025 Chin. Phys. B 34 078701

[1] Moore R, Speh J and Leak R 2002 Cell Tissue Res. 309 89
[2] Dibner C, Schibler U and Albrecht U 2010 Annu. Rev. Physiol. 72 517
[3] Honma S 2018 J. Physiol. Sci. 68 207
[4] Stratmann M and Schibler U 2006 J. Biol. Rhythms 21 494
[5] Brown S A and Azzi A 2013 Circadian Clocks 45 7
[6] Barclay J L, Tsang A H, Oster H 2012 Prog. Brain Res. 199 163
[7] Reppert S M and Weaver D R. 2002 Nature 418 935
[8] Refinetti R 2004 Acta Sci. Vet. 32 1
[9] Refinetti R 2006 Circadian Physiology (2nd Edn.) (Boca Raton: CRC Press) pp. 270-272
[10] Costa G 1996 Appl. Ergon. 27 9
[11] Smith M R and Eastman C I 2012 Nat. Sci. Sleep 4 111
[12] Boivin D B, Boudreau P and Kosmadopoulos A J 2022 J. Biol. Rhythms 37 3
[13] Gu C G, Wang P and Yang H J 2019 Chin. Phys. B 28 018701
[14] Gu C, Xu J, Liu Z and Rohling J H 2013 Phys. Rev. E 88 022702
[15] Zhu B, Zhou J, Jia M, Yang H and Gu C G 2020 Chin. Phys. B 29 068702
[16] Buijink M R and Michel S 2021 J. Neurochem. 157 73
[17] Hofman M A and Swaab D F 2006 Ageing Res. Rev. 5 33
[18] Nakamura T J, Takasu N N and Nakamura W 2016 J. Physiol. Sci. 66 367
[19] Tahara Y, Takatsu Y, Shiraishi T, Kikuchi Y, Yamazaki M, Motohashi H, Muto A, Sasaki H, Haraguchi A, Kuriki D, Nakamura T J and Shibata S 2017 NPJ Aging and Mechanisms of Disease 3 16030
[20] Abraham U, Granada A E, Westermark P O, Heine M, Kramer A and Herzel H 2010 Mol. Syst. Biol. 6 438
[21] De Wied D and Van Ree J M 1982 Life Sci. 31 709
[22] Charman W N 2003 Ophthalmic Physiol. Opt. 23 181
[23] Yildirim E, Curtis R and Hwangbo D S 2022 FEBS Lett. 596 263
[24] Huang Y, Zhang Y and Braun R 2023 Chaos 33 093104
[25] Leloup J C and Goldbeter A 2003 Proc. Natl. Acad. Sci. USA 100 7051
[26] Becker-Weimann S, Wolf J, Herzel H and Kramer A 2004 Biophys. J. 87 3023
[27] Gonze D, Bernard S, Waltermann C, Kramer A and Herzel H 2005 Biophys. J. 89 120
[28] Ruoff P, Loros J J and Dunlap J C 2005 Proc. Natl. Acad. Sci. USA 102 17681
[29] Komin N, Murza A C, Hernández-García E and Toral R 2011 Interface Focus 1 167
[30] To T L, Henson M A, Herzog E D and Doyle F J 2007 Biophys. J. 92 3792
[31] Abraham U, Granada A E, Westermark P O, Heine M, Kramer A and Herzel H 2010 Mol. Syst. Biol. 6 438
[32] Welsh D K, Logothetis D E, Meister M and Reppert S M 1995 Neuron 14 697
[33] Honma S, Nakamura W, Shirakawa T and Honma K I 2004 Neurosci. Lett. 358 173
[34] Yoo S H, Yamazaki S, Lowrey P L, Shimomura K, Ko C H, Buhr E D and Takahashi J S 2004 Proc. Natl. Acad. Sci. USA 101 5339
[35] Sellix M T, Evans J A, Leise T L, Castanon-Cervantes O, Hill D D, DeLisser P, Block G D, Menaker M and Davidson A J 2012 Journal of Neuroscience 32 16193
[36] Giebultowicz J M and Long D M 2015 Current Opinion in Insect Science 7 82
[37] Li Y, Tan Y Y, Zhao Z 2024 Biosystems 236 105111
[38] Banks G, Nolan P M and Peirson S N 2016 Mamm. Genome 27 332
[39] Pandi-Perumal S R, Seils L K and Kayumov L 2002 Ageing Res. Rev. 1 559
[40] Buijink M R and Michel S 2021 J. Neurochem. 157 73
[41] Zhou J, Gu C G, Song Y X and Xu Y 2023 Chin. Phys. B 32 098701
[42] Manoogian E N C and Panda S 2017 Ageing Res. Rev. 39 59
[43] Bae S A and Androulakis I P 2018 American Journal of Physiology Endocrinology and Metabolism 314 E531
[44] Li Y, Guo J C and Wang Xue 2023 Chin. Phys. B 32 068702
[1] Stabilized adaptive waveform inversion for enhanced robustness in Gaussian penalty matrix parameterization and transcranial ultrasound imaging
Jun-Jie Zhao(赵俊杰), Shan-Mu Jin(金山木), Yue-Kun Wang(王月坤), Yu Wang(王裕), and Ya-Hui Peng(彭亚辉). Chin. Phys. B, 2025, 34(8): 084301.
[2] Protein aging dynamics: A perspective from non-equilibrium coarse-grained models
Yue Shan(单月), Chun-Lai Ren(任春来), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(5): 058301.
[3] Impact of free electron laser coherence on imaging quality
Shuang Wei(魏爽), Shuang Gong(龚爽), Yang Bu(步扬), and Zi-Jian Song(宋子健). Chin. Phys. B, 2025, 34(5): 054201.
[4] Ultracold atomic absorption imaging system in high magnetic fields
Yuying Chen(陈玉莹), Zhengxi Zhang(张正熙), Hongmian Shui(税鸿冕), Yun Liang(梁芸), Fansu Wei(魏凡粟), and Xiaoji Zhou(周小计). Chin. Phys. B, 2025, 34(5): 053303.
[5] Multi-parameter ultrasound imaging for musculoskeletal tissues based on a physics informed generative adversarial network
Pengxin Wang(王鹏鑫), Heyu Ma(马贺雨), Tianyu Liu(刘天宇), Chengcheng Liu(刘成成), Dan Li(李旦), and Dean Ta(他得安). Chin. Phys. B, 2025, 34(4): 044301.
[6] Signal estimation bias in x-ray dark-field imaging using dual phase grating interferometer
Zhi-Li Wang(王志立), Zun Zhang(张尊), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2025, 34(3): 038701.
[7] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[8] In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
Hao-Ran Tao(陶浩然), Lei Du(杜磊), Liang-Liang Guo(郭亮亮), Yong Chen(陈勇), Hai-Feng Zhang(张海峰), Xiao-Yan Yang(杨小燕), Guo-Liang Xu(徐国良), Chi Zhang(张 驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090310.
[9] A large language model-powered literature review for high-angle annular dark field imaging
Wenhao Yuan(袁文浩), Cheng Peng(彭程), and Qian He(何迁). Chin. Phys. B, 2024, 33(9): 098703.
[10] High-quality ghost imaging based on undersampled natural-order Hadamard source
Kang Liu(刘炕), Cheng Zhou(周成), Jipeng Huang(黄继鹏), Hongwu Qin(秦宏伍), Xuan Liu(刘轩), Xinwei Li(李鑫伟), and Lijun Song(宋立军). Chin. Phys. B, 2024, 33(9): 094204.
[11] Cryogenic transmission electron microscopy on beam-sensitive materials and quantum science
Gang Wang(王刚) and Jun-Hao Lin(林君浩). Chin. Phys. B, 2024, 33(8): 086801.
[12] Subtraction of liposome signals in cryo-EM structural determination of protein-liposome complexes
Shouqing Li(李首卿), Ming Li(李明), Yumei Wang(王玉梅), and Xueming Li(李雪明). Chin. Phys. B, 2024, 33(8): 088702.
[13] Performance optimization of the neutron-sensitive image intensifier used in neutron imaging
Jinhao Tan(谭金昊), Yushou Song(宋玉收), Jianrong Zhou(周健荣), Wenqin Yang(杨文钦), Xingfen Jiang(蒋兴奋), Jie Liu(刘杰), Chaoyue Zhang(张超月), Xiaojuan Zhou(周晓娟), Yuanguang Xia(夏远光), Shulin Liu(刘术林), Baojun Yan(闫保军), Hui Liu(刘辉), Songlin Wang(王松林), Yubin Zhao(赵豫斌), Jian Zhuang(庄建), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2024, 33(8): 086102.
[14] Unveiling the in-plane anisotropic dielectric waveguide modes in α-MoO3 flakes
Ying Liao(廖莹) and Jianing Chen(陈佳宁). Chin. Phys. B, 2024, 33(7): 078401.
[15] High-visibility ghost imaging with phase-controlled discrete classical light sources
Xueying Wu(仵雪滢), Yue Zhao(赵岳), and Liming Li(李利明). Chin. Phys. B, 2024, 33(7): 074202.
No Suggested Reading articles found!