Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070702    DOI: 10.1088/1674-1056/adcdf0
GENERAL Prev   Next  

Flux trapping behavior in a joint-less closed-loop 2G-HTS coil under multi-pulse magnetic field excitation

Hao Dong(董浩)1,2, Daxing Huang(黄大兴)1,2,3,†, Hao Yu(于昊)1,2, Hongwei Gu(古宏伟)1,2,3,‡, and Fazhu Ding(丁发柱)1,2,3,§
1 Key Laboratory of Applied Superconductivity and Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology and Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan 250100, China
Abstract  Second-generation high-temperature superconducting (2G-HTS) magnets operating in persistent current mode (PCM) hold great promise for applications such as magnetic resonance imaging. The development of joint-less closed-loop magnets has effectively tackled the challenges of fabricating joints for REBCO tape. However, certain closed-loop magnets cannot utilize conventional persistent current switches (PCS) and instead require multi-pulse magnetization techniques. This study explores the effects of multi-pulse magnetic field excitation on the flux trapping behavior of a four-pancake coil (FPC). A detailed comparison of the effects of different pulse types and periods on the FPC reveals that the background magnetic field exceeds the critical magnetic field of the coil, thereby creating resistance in the superconducting loop. The critical magnetic field of the FPC is determined experimentally, and a reasonable speculation on the multi-pulse field excitation mechanism is presented.
Keywords:  joint-less coil      second-generation high-temperature superconducting (2G-HTS) coil      multi-pulse      excitation  
Received:  23 February 2025      Revised:  11 April 2025      Accepted manuscript online:  17 April 2025
PACS:  07.55.Db (Generation of magnetic fields; magnets)  
  74.72.-h (Cuprate superconductors)  
  84.71.Ba (Superconducting magnets; magnetic levitation devices)  
  84.71.Mn (Superconducting wires, fibers, and tapes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE03150203), the National Natural Science Foundation of China (Grant Nos. U2032217, 52072366, and 52477031), and Shandong Provincial Natural Science Foundation (Grant No. ZR2024ME217).
Corresponding Authors:  Daxing Huang, Hongwei Gu, Fazhu Ding     E-mail:  huangdaxing@mail.iee.ac.cn;guhw@mail.iee.ac.cn;dingfazhu@mail.iee.ac.cn

Cite this article: 

Hao Dong(董浩), Daxing Huang(黄大兴), Hao Yu(于昊), Hongwei Gu(古宏伟), and Fazhu Ding(丁发柱) Flux trapping behavior in a joint-less closed-loop 2G-HTS coil under multi-pulse magnetic field excitation 2025 Chin. Phys. B 34 070702

[1] Hazelton D W, Rice J A, Hascicek Y S, Weijers H W and Vansciver S W 1995 IEEE Trans. Appl. Supercond. 5 234
[2] Kim W S, Lee S, Kim Y, Lee J Y, Park S H, Lee J K, Hong G W, Han J and Choi K 2015 IEEE Trans. Appl. Supercond. 25 4301504
[3] Parkinson B 2017 Supercond. Sci. Technol. 30 014009
[4] Wang Y, Wang Q, Wang H, Chen S, Hu X, Liu Y and Liu F 2022 Supercond. Sci. Technol. 35 014001
[5] Lee H G, Kim J G, Lee S W, Kim W S, Lee S W, Choi K D, Hong G W and Ko T K 2006 Physica C 445 1099
[6] Li Z and Zheng G Q 2018 Chin. Phys. B 27 077404
[7] Yoon S, Kim J, Cheon K, Lee H, Hahn S and Moon S H 2016 Supercond. Sci. Technol. 29 04lt04
[8] Kim K, Bhattarai K R, Jang J Y, Hwang Y J, Kim K, Yoon S, Lee S and Hahn S 2017 Supercond. Sci. Technol. 30 065008
[9] Bai H, Bird M D, Cooley L D, Dixon I R, Kim K L, Larbalestier D C, Marshall W S, Trociewitz U P, Weijers H W, Abraimov D V and Boebinger G S 2020 IEEE Trans. Appl. Supercond. 30 4300405
[10] Liu S, Wang L, Chen Y, Wang L, Zhou B, Hu X, Cheng J and Wang Q 2023 Supercond. Sci. Technol. 36 064002
[11] Kulikov I V, Chernykh M Y, Krylova T S, Yashkin D S, Chernykh I A and Zanaveskin M L 2020 Supercond. Sci. Technol. 33 015001
[12] Huang D, Shang H, Xie B, Zou Q, Dong H, Wang K, Zhang L, Gu H and Ding F 2022 Supercond. Sci. Technol. 35 075004
[13] Sheng J, Zhang M,Wang Y, Li X, Patel J and Yuan W 2017 Supercond. Sci. Technol. 30 094002
[14] Hu Y, Wang Y, Yuan X, Chen H, Liu M, Wang M, Peng C and Pi W 2019 IEEE Trans. Appl. Supercond. 29 4900505
[15] Brialmont S, Dular J, Wera L, Fagnard J F, Vanderheyden B, Geuzaine C, Hahn S, Patel A and Vanderbemden P 2023 Supercond. Sci. Technol. 36 054004
[16] Hou Y B,Wang Y S, Kan C T, Yuan X and Pi W 2018 Chin. Phys. Lett. 35 067402
[17] Dong H, Huang D, Wang T, Gu H and Ding F 2024 Supercond. Sci. Technol. 37 015003
[18] Dong H, Huang D, Yu H, Gu H and Ding F 2024 Superconductivity 12 100139
[19] Taylor R W, Weijers H W, Ainslie M D, Congreve J V J, Durrell J H, Badcock R A and Bumby C W 2024 Supercond. Sci. Technol. 37 03lt01
[20] Yuan X, Wang Y, Hou Y, Kan C, Cai C and Sun M 2018 IEEE Trans. Appl. Supercond. 28 4603005
[21] Hu Y, Wang Y, Lu Y, Chen H, Liu M, Yuan X, Wang M and Pi W 2019 IEEE Trans. Appl. Supercond. 29 6801905
[22] Yuan X,Wang Y, Qiao Y,Wang Y and Kang Q 2021 IEEE Trans. Appl. Supercond. 31 4602505
[23] Wang J W, Wang Y S, Chai H, Zhu L F and Pi W 2022 Chin. Phys. B 31 037402
[24] Tosaka T, Kuriyama T, Yamaji M, Kuwano K, Igarashi M and Terai M 2004 IEEE Trans. Appl. Supercond. 14 1218
[25] Li C, Geng J, Gawith J, Shen B, Zhang X, Zhang H, Ma J and Coombs T A 2018 IEEE Trans. Appl. Supercond. 28 4603205
[26] Li C, Geng J, Shen B, Li X, Gawith J, Ma J, Yang J and Coombs T A 2019 IEEE Trans. Appl. Supercond. 29 4900704
[27] Redzic D V 2018 Eur. J. Phys. 39 025205
[1] Euler-modified pulley-type microring on lithium niobate platform
Wen-Hui Song(宋文慧), Dong-Jie Guo(郭东洁), Ran Yang(杨然), Jia-Chen Duan(端家晨), Zi-Shuo Gu(顾子硕), Ji Tang(汤济), Zhilin Ye(叶志霖), Xiao-Hui Tian(田晓慧), Kunpeng Jia(贾琨鹏), Zhong Yan(严仲), Zhijun Yin(尹志军), Yan-Xiao Gong(龚彦晓), Zhenda Xie(谢臻达), Zhenlin Wang(王振林), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2025, 34(8): 084205.
[2] Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志). Chin. Phys. B, 2025, 34(6): 067507.
[3] SR and NMR studies on the van der Waals cluster magnet Nb3Cl8
Lin Yang(杨林), Detong Wu(吴德桐), Xin Han(韩鑫), Jun Luo(罗军), Bo Liu(刘波), Xiaoyan Ma(马肖燕), Huiqian Luo(罗会仟), Jie Yang(杨杰), Bing Shen(沈冰), Rhea Stewart, Devashibhai Adroja, Youguo Shi(石友国), Rui Zhou(周睿), and Shiliang Li(李世亮). Chin. Phys. B, 2025, 34(5): 057501.
[4] Excitation threshold of solitons in anharmonic chains
Yi Ming(明燚). Chin. Phys. B, 2025, 34(2): 020501.
[5] Electronic band structures of topological kagome materials
Man Li(李满), Huan Ma(马欢), Rui Lou(娄睿), and Shancai Wang(王善才). Chin. Phys. B, 2025, 34(1): 017101.
[6] Mapping the antiparallel aligned domain rotation by microwave excitation
Jing Zhang(张景), Yuanzhi Cui(崔远志), Xiaoyu Wang(王晓雨), Chuang Wang(王创), Mengchen Liu(刘梦晨), Jie Xu(徐洁), Kai Li(李凯), Yunhe Zhao(赵芸鹤), Zhenyan Lu(陆振烟), Lining Pan(潘丽宁), Chendong Jin(金晨东), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Derang Cao(曹德让). Chin. Phys. B, 2024, 33(9): 097506.
[7] Electron capture and excitation in intermediate-energy He2+-H(1s,2s) collisions
Yadong Liu(刘亚东), Congcong Jia(贾聪聪), Mingxuan Ma(马茗萱), Xiang Gao(高翔), Ling Liu(刘玲), Yong Wu(吴勇), Xiangjun Chen(陈向军), and Jianguo Wang(王建国). Chin. Phys. B, 2024, 33(8): 083401.
[8] Excitation and ionization of OCS molecules in strong UV and NIR laser fields
Huijun Shi(师慧军), Yang Liu(刘洋), Tian Sun(孙添), Hang Lv(吕航), and Haifeng Xu(徐海峰). Chin. Phys. B, 2024, 33(7): 073301.
[9] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[10] Low-energy inelastic electron scattering from carbon monoxide: Excitation and de-excitation of the X1Σ+, a3Π, a'3Σ+, A1Π, d3Δ, e3Σ-, I1Σ- and D1Δ electronic states
Pengyu Wei(卫鹏宇), Chaowen Huang(黄朝文), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2024, 33(4): 043101.
[11] Core level excitation spectra of La and Mn ions in LaMnO3
Fujian Li(李福建), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2024, 33(3): 033201.
[12] Momentum distributions of symmetric (H2+) and asymmetric (HeH2+) molecular ions in a circularly polarized laser field under different ionization mechanisms
Xin-Yu Hao(郝欣宇), Shu-Juan Yan(闫淑娟), Ying Guo(郭颖), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(12): 123401.
[13] Dynamic responses of an energy harvesting system based on piezoelectric and electromagnetic mechanisms under colored noise
Yong-Ge Yang(杨勇歌), Yun Meng(孟运), Yuan-Hui Zeng(曾远辉), and Ya-Hui Sun(孙亚辉). Chin. Phys. B, 2023, 32(9): 090201.
[14] Nonlinear modes coupling of trapped spin-orbit coupled spin-1 Bose-Einstein condensates
Jie Wang(王杰), Jun-Cheng Liang(梁俊成), Zi-Fa Yu(鱼自发), An-Qing Zhang(张安庆),Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2023, 32(9): 090305.
[15] Facilitation of controllable excitation in Rydberg atomic ensembles
Han Wang(王涵) and Jing Qian(钱静). Chin. Phys. B, 2023, 32(8): 083302.
No Suggested Reading articles found!