|
|
Excitation and ionization of OCS molecules in strong UV and NIR laser fields |
Huijun Shi(师慧军), Yang Liu(刘洋), Tian Sun(孙添), Hang Lv(吕航)†, and Haifeng Xu(徐海峰)‡ |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract Rydberg state excitation (RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments (S, C, OC) of the tri-atomic molecule carbonyl sulfide (OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
|
Received: 26 December 2023
Revised: 16 February 2024
Accepted manuscript online: 05 March 2024
|
PACS:
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
34.80.Gs
|
(Molecular excitation and ionization)
|
|
Fund: Project supported by the National Key Program for S&T Research and Development (Grant No. 2019YFA0307700) and the National Natural Science Foundation of China (Grant Nos. 12174148, 11874179, 12074144, and 12074146). |
Corresponding Authors:
Hang Lv, Haifeng Xu
E-mail: Lvhang0811@jlu.edu.cn;xuhf@jlu.edu.cn
|
Cite this article:
Huijun Shi(师慧军), Yang Liu(刘洋), Tian Sun(孙添), Hang Lv(吕航), and Haifeng Xu(徐海峰) Excitation and ionization of OCS molecules in strong UV and NIR laser fields 2024 Chin. Phys. B 33 073301
|
[1] Wolter B, Pullen M G, Baudisch M, Sclafani M, Hemmer M, Senftleben A, Schröter C D, Ullrich J, Moshammer R and Biegert J 2015 Phys. Rev. X 5 21034 [2] Vozzi C, Negro M and Stagira S 2012 J. Mod. Optic 59 1283 [3] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389 [4] Tang J, Zhang G, He Y, Li M, Ding X and Yao J 2020 Chin. Phys. Lett. 37 24201 [5] Fittinghofr D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642 [6] Auguste T, Monot P, Lompé L A, Mainfray G and Manus C 1992 J. Phys. B: At. Mol. Opt. Phys. 25 4181 [7] Quan W, Lai X, Chen Y, Wang C, Hu Z, Liu X, Hao X, Chen J, Hasović E, Busuladžić M, Becker W and Milošević D B 2013 Phys. Rev. A 88 21401 [8] Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett. 62 1259 [9] Ferray M, L’Huillier A, Li XF, Lomprk LA, Mainfray G and Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31 [10] Nubbemeyer T, Gorling K, Saenz A, Eichmann U and Sandner A W 2008 Phys. Rev. Lett. 101 233001 [11] Wang B B, Li X F, Fu P M, Chen J and Liu J 2006 Chin. Phys. Lett. 23 2729 [12] Eichmann U, Nubbemeyer T, Rottke H and Sandner W 2009 Nature 461 1261 [13] Yun H, Mun J H, Hwang S I, Park S B, Ivanov I A, Nam C H and Kim K T 2018 Nat. Photon. 12 620 [14] Liu M, Xu S, Hu S, Becker W, Quan W, Liu X and Chen J 2021 Optica 8 765 [15] Shvetsov-Shilovskia N I, Goreslavskia S P, Popruzhenkoa S V and Beckerb W 2009 Laser Phys. 19 1550 [16] Sun T, Zhao L, Liu Y A, Guo J, Lv H and Xu H 2023 Phys. Rev. A 108 13120 [17] Popov A M, Tikhonova O V and Volkova E A 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204012 [18] Popov A M, Tikhonova O V and Volkova E A 2010 Laser Phys. 20 1028 [19] Zimmermann H, Patchkovskii S, Ivanov M and Eichmann U 2017 Phys. Rev. Lett. 118 13003 [20] Li Q, Tong X, Morishita T, Jin C, Wei H and Lin C D 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204019 [21] Shu Z, Liu M, Hu S and Chen J 2020 Opt. Express 28 11165 [22] Hu S, Hao X, Lv H, Liu M, Yang T, Xu H, Jin M, Ding D, Li Q, Li W, Becker W and Chen J 2019 Opt. Express 27 31629 [23] Lv H, Zuo W L, Zhao L, Xu H F, Jin M X, Ding D J, Hu S L and Chen J 2016 Phys. Rev. A 93 33415 [24] Emmanouilidou A, Lazarou C, Staudte A and Eichmann U 2012 Phys. Rev. A 85 11402 [25] McKenna J, Zeng S, Hua J J, Sayler A M, Zohrabi M, Johnson N G, Gaire B, Carnes K D, Esry B D and Ben-Itzhak I 2011 Phys. Rev. A 84 43425 [26] Nubbemeyer T, Eichmann U and Sandner W 2009 J. Phys. B: At. Mol. Opt. Phys. 42 134010 [27] Zhang W, Lu P, Gong X, Li H, Ji Q, Lin K, Ma J, Li H, Sun F, Qiang J, Chen F, Tong J and Wu J 2020 Phys. Rev. A 101 033401 [28] von Veltheim A, Manschwetus B, Quan W, Borchers B, Steinmeyer G, Rottke H and Sandner W 2013 Phys. Rev. Lett. 110 23001 [29] Xie X, Wu C, Liu H, Li M, Deng Y, Liu Y, Gong Q and Wu C 2013 Phys. Rev. A 88 65401 [30] McKenna J, Sayler A M, Gaire B, Kling N G, Esry B D, Carnes K D and Ben-Itzhak I 2012 New J. Phys. 14 103029 [31] Hikosaka Y 2023 J. Chem. Phys. 158 214306 [32] Jarraya M, Wallner M, Ben Yaghlane S, Olsson E, Ideböhn V, Squibb R J, Palaudoux J, Nyman G, Al-Mogren M M, Eland J H D, Feifel R and Hochlaf M 2023 Phys. Chem. Chem. Phys. 25 19435 [33] Ramadhan A, Wales B, Karimi R, Gauthier I, MacDonald M, Zuin L and Sanderson J 2016 J. Phys. B: At. Mol. Opt. Phys. 49 215602 [34] Wang B, Han J, Zhu X, Wei L, Ren B, Zhang Y, Yu W, Yan S, Ma X, Zou Y, Chen L and Wei B 2021 Phys. Rev. A 103 042810 [35] Sharma D, Bapat B, Bhatt P and Safvan C P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 155202 [36] Ma P, Wang C, Luo S, Li X, Hu W, Yu J, Yu X, Tian X, Qu Z and Ding D 2019 Phys. Rev. A 99 023423 [37] Wales B, Bisson E, Karimi R, Beaulieu S, Ramadhan A, Giguère M, Long Z, Liu W, Kieffer J, Légaré F and Sanderson J 2014 J. Electron. Spectrosc. 195 332 [38] Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju P K, Rolles D, Rudenko A, Carnes K D, Esry B D and Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001 [39] Oda K, Hita M, Minemoto S and Sakai H 2010 Phys. Rev. Lett. 104 213901 [40] Goban A, Minemoto S and Sakai H 2008 Phys. Rev. Lett. 101 13001 [41] Sakemi Y, Minemoto S and Sakai H 2017 Phys. Rev. A 96 011401 [42] Hansen J L, Holmegaard L, Nielsen J H, Stapelfeldt H, Dimitrovski D and Madsen L B 2012 J. Phys. B: At. Mol. Opt. Phys. 45 15101 [43] Holmegaard L, Hansen JL, Kalhøj L, Louise Kragh S, Stapelfeldt H, Filsinger F, Küpper J, Meijer G, Dimitrovski D, Abu-samha M, Mar-tiny C P J and Bojer Madsen L 2010 Nat. Phys. 6 428 [44] Zhao L, Dong J, Lv H, Yang T, Lian Y, Jin M, Xu H, Ding D, Hu S and Chen J 2016 Phys. Rev. A 94 053403 [45] Ammosov M V, Delone N B and Krainov V P 1986 Soviet Physics Jetp 64 1191 [46] Zuo W, Lv H, Zhao L, Zhang Q and Xu H 2015 Int. J. Mass Spectrom 392 80 [47] Popov V S 2004 Phys.-Usp. 47 855 [48] Guo K, Li M, Liang J, Cao C, Zhou Y and Lu P 2023 Chin. Phys. B 32 23201 [49] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [50] Corkum P B 2011 Phys. Today 64 36 [51] Xu Q, Ben S, Sun Y, Xu H, Liu X, Lv H and Guo J 2020 Chem Phys. Lett. 747 137326 [52] Zuo W, Ben S, Lv H, Zhao L, Guo J, Liu X, Xu H, Jin M and Ding D 2016 Phys. Rev. A 93 53402 [53] Yang T X, Lian Y, Wang R, Zhang S W, He L H, Lv H and Xu H F 2017 J. at Mol. Sci. 8 49 [54] Lv H, Zhang J F, Zuo W L, Xv H F, Jing M X and Ding D J 2015 Chin. Phys. B 24 063303 [55] Dimitrovski D, Abu-samha M and Madsen L B 2011 Phys. Rev. A 83 23405 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|