Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 060201    DOI: 10.1088/1674-1056/adc65d
GENERAL   Next  

Coherent states associated with integral multi-index Mittag-Leffler functions

Dušan Popov1,2,†
1 University Politehnica Timisoara, Department of Physical Foundations of Engineering, B-dul Vasile Pârvan No. 2, 300223 Timisoara, Romania;
2 Serbian Academy of Nonlinear Sciences (SANS), Kneza Mihaila 36, Beograd-Stari Grad, Belgrade, Serbia
Abstract  The purpose of this paper is to show that by using a certain type of discrete-continuous limit, a series of integral entities can be defined (Mittag-Leffler multi-index functions, associated coherent states and their properties), which are counterparts of the corresponding discrete entities. We built and examine the properties of a new aspect of generalized integral multi-index Mittag-Leffler functions and we constructed and examined the properties of coherent states associated with this new function. This approach is motivated through the fact that these functions can be connected with the coherent states of the continuous spectrum, as well as with so-called nu-function.
Keywords:  Mittag-Leffler      coherent states      density operator      continuous spectrum  
Received:  18 December 2024      Revised:  01 March 2025      Accepted manuscript online:  28 March 2025
PACS:  02.30.Gp (Special functions)  
  02.30.Tb (Operator theory)  
  03.65.Ca (Formalism)  
  05.30.-d (Quantum statistical mechanics)  
Corresponding Authors:  Dusan Popov     E-mail:  dusan_popov@yahoo.co.uk

Cite this article: 

Dušan Popov1,2, Coherent states associated with integral multi-index Mittag-Leffler functions 2025 Chin. Phys. B 34 060201

[1] Mainardi F 2000 Entropy 22 1359
[2] Mittag-Leffler M G 1903 C. R. Acad. Sci. (Paris) 137 554
[3] Andrić M (ed.) 2022 Fractional Calculus Operators and the Mittag- Leffler Function (Basel: MDPI) p. 1
[4] Shukla A K and Prajapaty J C 2007 J. Math. Anal. Appl. 336 797
[5] Salim T O 2009 Adv. Appl. Math. Anal. 4 21
[6] Mathai A M 2010 Fract. Calc. Appl. Anal. 13 113
[7] Haubold H J, Mathai AMand Saxena R K 2011 J. Appl. Math. 298628
[8] Antoine J P, Gazeau J P, Monceau P, Klauder J R and Penson K A 2001 J. Math. Phys. 42 2349
[9] Klauder J R, Penson K A and Sixdeniers J M 2001 Phys. Rev. A 64 013817
[10] Dattoli G, Gorska K, Horzela A, Licciardi S and Pidatella R M 2017 Eur. Phys. J: Spec. Top. 226 3427
[11] Popov D 2024 arXiv: 2410.19462v1
[12] Paneva-Konovska J and Kiryakova V 2020 Int. J. Appl. Math. 33 549
[13] Appl T and Schiller D H 2004 J. Phys. A: Math. Gen. 37 2731
[14] Erdélyi A, Magnus W, Tricomi F G and Oberhettinger F 1983 Higher Transcendental Functions, Vol. 3: The Function y(x) and Related Functions, 4th edn. (New York: McGraw-Hill 1981) p. 206
[15] Srivastava H M and Tomovski Ž 2009 Appl. Math. Comput. 211 198
[16] Andrić M, Farid G and Pečarić J 2018 Fract. Calc. Appl. Anal. Ž. 21 1377
[17] Popov D and Popov M 2016 Rom. Rep. Phys. 68 1335
[18] Popov D and Popov M 2015 Phys. Scr. 90 035101
[19] Mathai A M and Saxena R K 1973 Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences Lect. Notes Math. 348 (Berlin: Springer-Verlag) p. 79
[20] Husimi K 1940 Proc. Phys.-Math. Soc. Jpn., 3rd Ser. 22 264
[21] https://functions.wolfram.com/HypergeometricFunctions/HypergeometricU/26/02/02
[22] https://functions.wolfram.com/HypergeometricFunctions/HypergeometricU/03/01/03/
[23] Popov D 2024 arXiv: 2409.05476v1
[24] Haubold H J, Mathai AMand Saxena R K 2011 J. Appl. Math. 298628
[25] Feynman R P 1972 Statistical Machanics (Massachusetts: Benjamin) p. 61
[26] Rajković P M, Marinković S D and Stanković M 2007 Fract. Calc. Appl. Anal. 10 359
[27] Mansour Z S I 2009 Fract. Calc. Appl. Anal. 12 159
[28] Correa E A, Cardoso L X, Tognetti T C and Amorim R G G 2022 C.Q.D.-Rev.Eletrônica Paulista de Matemática 22 p. 40
[29] Seybold H and Hilfer R 2009 SIAM J. Numer. Anal. 47 69
[30] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information, 10th eds. (Cambridge: Cambridge University Press) p. 102
[31] Mandel L 1979 Opt. Lett. 4 205
[32] Ghostal S and Chaterjee A 1995 Phys. Rev. B 52 982
[33] Popov D 2002 J. Phys. A: Math. Gen. 35 7205
[34] Popov D and Pop N 2014 Chin. J. Phys. 52 738
[35] Mehta C L, Chand P, Sudarshan E C G and Vedam R 1967 Phys. Rev. 157 1198
[1] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[2] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[3] Coexistence and local Mittag-Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions
Yu-Jiao Huang(黄玉娇), Shi-Jun Chen(陈时俊), Xu-Hua Yang(杨旭华), Jie Xiao(肖杰). Chin. Phys. B, 2019, 28(4): 040701.
[4] Asymmetric W-shaped and M-shaped soliton pulse generated from a weak modulation in an exponential dispersion decreasing fiber
Xiang-Shu Liu(刘祥树), Li-Chen Zhao(赵立臣), Liang Duan(段亮), Zhan-Ying Yang(杨战营), Wen-Li Yang(杨文力). Chin. Phys. B, 2017, 26(12): 120503.
[5] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[6] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[7] Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique
Dušan Popov, Romeo Negrea, Miodrag Popov. Chin. Phys. B, 2016, 25(7): 070301.
[8] Hong-Ou-Mandel interference with two independent weak coherent states
Hua Chen(陈华), Xue-Bi An(安雪碧), Juan Wu(伍娟), Zhen-Qiang Yin(银振强), Shuang Wang(王双), Wei Chen(陈巍), Zhen-Fu Han(韩正甫). Chin. Phys. B, 2016, 25(2): 020305.
[9] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
Wang Qiao (王乔), Ding Dong-Sheng (丁冬生), Qi Dong-Lian (齐冬莲). Chin. Phys. B, 2015, 24(6): 060508.
[10] Maximal entanglement from photon-added nonlinear coherent states via unitary beam splitters
K. Berrada. Chin. Phys. B, 2014, 23(2): 024208.
[11] Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method
M K Tavassoly, H R Jalali. Chin. Phys. B, 2013, 22(8): 084202.
[12] Effects of photon addition on quantum nonlocality of squeezed entangled coherent states
Zhou Ben-Yuan (周本元), Deng Lei (邓磊), Duan Yong-Fa (段永法), Yu Li (喻莉), Li Gao-Xiang (李高翔). Chin. Phys. B, 2012, 21(9): 090302.
[13] Oscillation behaviour in the photon-number distribution of squeezed coherent states
Wang Shuai(王帅), Zhang Xiao-Yan(张晓燕), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(5): 054206.
[14] The Fourier slice transformation of the Wigner operator and the quantum tomogram of the density operator
Wang Tong-Tong(王彤彤) and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(3): 034203.
[15] The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states
Zhang Jing-Tao (张静涛), He Guang-Qiang (何广强), Ren Li-Jie (任李杰), Zeng Gui-Hua (曾贵华). Chin. Phys. B, 2011, 20(5): 050311.
No Suggested Reading articles found!