Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054206    DOI: 10.1088/1674-1056/21/5/054206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Oscillation behaviour in the photon-number distribution of squeezed coherent states

Wang Shuai(王帅)a)b)†, Zhang Xiao-Yan(张晓燕)b), and Fan Hong-Yi(范洪义) a)
a. Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China;
b. Department of Physics, Heze University, Heze 274015, China
Abstract  From the normally ordered form of the density operator of a squeezed coherent state (SCS), we directly derive the compact expression of the SCS's photon-number distribution (PND). Besides the known oscillation characteristics, we find that the PND is a periodic function with a period of π and extremely sensitive to phase. If the squeezing is strong enough, and the compound phase which is relevant to the complex squeezing and displacement parameters are assigned appropriate values, different oscillation behaviours in PND for even and odd photon numbers appear, respectively.
Keywords:  photon-number distribution      squeezed coherent states      normal ordering  
Received:  20 October 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175113), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010AQ024), and the Scientific Research Foundation of Heze University of Shandong Province, China (Grant No. XYJJKJ-1).

Cite this article: 

Wang Shuai(王帅), Zhang Xiao-Yan(张晓燕), and Fan Hong-Yi(范洪义) Oscillation behaviour in the photon-number distribution of squeezed coherent states 2012 Chin. Phys. B 21 054206

[1] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press)
[2] Schleich W, Walls D F and Wheeler J A 1988 Phys. Rev. A 38 1177
[3] Schleich W and Wheeler J A 1987 Nature 326 574
[4] Schleich W and Wheeler J A 1987 J. Opt. Soc. Am. B 4 1715
[5] Agarwal G S and Adam G 1988 Phys. Rev. A 38 750
[6] Agarwal G S and Adam G 1989 Phys. Rev. A 39 6259
[7] Chaturvedi S and Srinivasan V 1989 Phys. Rev. A 40 6095
[8] Kim M S, de Oliveira F A M and Knight P L 1989 Phys. Rev. A 40 2494
[9] Peřina J and Bajer J 1990 Phys. Rev. A 41 516
[10] Dutta B, Mukunda N, Simon R and Subramaniam A 1993 J. Opt. Soc. Am. B 10 253
[11] Dodonov V V, Man'ko O V and Man'ko V I 1994 Phys. Rev. A 49 2993
[12] Schiller S, Breitenbach G, Pereira S F, M黮ler T and Mlynek J 1996 Phys. Rev. Lett. 77 2933
[13] Mehmet M, Vahlbruch H, Lastzka N, Danzmann K and Schnabel R 2010 Phys. Rev. A 81 013814
[14] Zhu C and Caves C M 1990 Phys. Rev. A 42 6794
[15] Xiang S H, Shao B and Song K H 2009 Chin. Phys. B 18 418
[16] Xu X X, Hu L Y and Fan H Y 2009 Chin. Phys. B 18 5139
[17] Jiang N Q 2005 Opt. Commun. 254 256
[18] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[19] Jiang N Q, Jin B Q, Zhang Y and Cai G C 2008 Europhys. Lett. 84 14002
[20] Jiang N Q, Fan H Y and Hu L Y 2011 J. Phys. A 44 195302
[21] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[22] Weyl H 1953 The Classical Groups (Princeton:Princeton University Press)
[23] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303
[24] Fan H Y 2006 Ann. Phys. 321 480
[25] Fan H Y 2008 Ann. Phys. 323 500
[26] Fan H Y and Fan Y 2002 Int. J. Mod. Phys. A 17 701
[27] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin Heidelberg:Springer-Verlag)
[28] Schumaker B L and Caves C M 1985 Phys. Rev. A 31 3093
[29] Glauber R J 1963 Phys. Rev. 130 2529
[30] Glauber R J 1963 Phys. Rev. 131 2766
[31] Yuen H P 1976 Phys. Rev. A 13 2226
[1] Recast combination functions of coordinate and momentum operators into their ordered product forms
Lei Wang(王磊), Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁). Chin. Phys. B, 2020, 29(5): 050303.
[2] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[3] Phase-sensitive nonclassical properties of photon-added-then-subtracted coherent squeezed states
Liu Gang (刘刚), Wu Mu-Sheng (吴木生), Hu Li-Yun (胡利云 ). Chin. Phys. B, 2012, 21(11): 114205.
[4] The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states
Zhang Jing-Tao (张静涛), He Guang-Qiang (何广强), Ren Li-Jie (任李杰), Zeng Gui-Hua (曾贵华). Chin. Phys. B, 2011, 20(5): 050311.
[5] Normal ordering and antinormal ordering of the operator $(fQ+gP)^n$ and some of their applications
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙). Chin. Phys. B, 2009, 18(4): 1534-1541.
[6] Properties of field quantum entropy evolution in the Jaynes--Cummings model with initial squeezed coherent states field
Liu Wang-Yun(刘王云), An Yu-Ying(安毓英), and Yang Zhi-Yong(杨志勇). Chin. Phys. B, 2007, 16(12): 3704-3709.
[7] Quantum nondemolition measurement of photon-number distribution for a weak cavity field with resonant atoms
Zheng Shi-Biao (郑仕标). Chin. Phys. B, 2003, 12(1): 51-54.
No Suggested Reading articles found!