Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040202    DOI: 10.1088/1674-1056/ab7803
GENERAL Prev   Next  

Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions

Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒)
Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China
Abstract  The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks (FDMNN) with parameters uncertainty and discontinuous activation functions. The relevant results are obtained under the framework of Filippov for such systems. Firstly, the novel feedback controller, which includes the discontinuous functions and time delays, is proposed to investigate such systems. Secondly, the conditions on finite-time Mittag-Leffler synchronization of FDMNN are established according to the properties of fractional-order calculus and inequality analysis technique. At the same time, the upper bound of the settling time for Mittag-Leffler synchronization is accurately estimated. In addition, by selecting the appropriate parameters of the designed controller and utilizing the comparison theorem for fractional-order systems, the global asymptotic synchronization is achieved as a corollary. Finally, a numerical example is given to indicate the correctness of the obtained conclusions.
Keywords:  fractional-order delayed memristive neural networks (FDMNN)      parameters uncertainty      discontinuous activation functions      finite-time Mittag-Leffler synchronization  
Received:  31 December 2019      Revised:  14 February 2020      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61703312 and 61703313).
Corresponding Authors:  Zhixia Ding     E-mail:  zxding89@163.com

Cite this article: 

Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒) Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions 2020 Chin. Phys. B 29 040202

[1] Zhu S, Wang L D and Duan S K 2017 Neurocomputing 227 147
[2] Hu X F, Feng G, Duan S K and Liu L 2016 IEEE Trans. Neural Netw. Learn. Syst. 28 1889
[3] Li T S, Duan S K, Liu J and Wang L D 2018 Neural Computing and Applications 30 1939
[4] Wen S P, Zeng Z G, Huang T W and Zhang Y D 2013 IEEE Trans. Fuzzy Syst. 22 1704
[5] Wu A L and Zeng Z G 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1919
[6] Xiao J Y and Zhong S M 2018 Appl. Math. Comput. 323 145
[7] Wu A L and Zeng Z G 2014 Neural Netw. 49 11
[8] Yang X S, Cao J D and Liang J L 2016 IEEE Trans. Neural Netw. Learn. Syst. 28 1878
[9] Ding Z X, Zeng Z G, Zhang H, Wang L M and Wang L H 2019 Neurocomputing 351 51
[10] Ding Z X, Zeng Z G and Wang L M 2017 IEEE Trans. Neural Netw. Learn. Syst. 29 1477
[11] Garza-Flores E and Alvarez-Borrego J 2018 J. Mod. Opt. 65 1634
[12] Zhang Y D, Yang X J, Cattani C, Rao R V, Wang S H and Phillips P 2016 Entropy 18 77
[13] Shen K M and Yu W 2018 IEEE Trans. Signal Process. 66 2631
[14] Mashayekhi S, Miles P, Hussaini M Y and Oates W S 2018 J. Mech. Phys. Solids 111 134
[15] Wu A L and Zeng Z G 2017 IEEE Trans. Neural Netw. Learn. Syst. 28 206
[16] Wei H Z, Li R X, Chen C R and Tu Z W 2017 Neural Process. Lett. 45 379
[17] Bao H B, Cao J D and Kurths J 2018 Nonlinear Dyn. 94 1215
[18] Wan L G, Zhan X S, Gao H L, Yang Q S, Han T and Ye M J 2019 Int. J. Syst. Sci. 50 1
[19] Chen L P, Huang T W, Machado J A, Lopes A M, Chai Y and Wu R C 2019 Neural Netw. 118 289
[20] Chen L P, Wu R C, Cao J D and Liu J B 2015 Neural Netw. 71 37
[21] Zhang W W, Cao J D, Wu R C, Chen D Y and Alsaadi F E 2018 Chaos, Solitons and Fractals 117 76
[22] Zhao W and Wu H Q 2018 Adv. Difference. Equ. 2018 213
[23] Chen C and Ding Z X 2019 Discrete Dyn. Nat. Soc. 2019 8743482
[24] Chen L P, Wu R C, He Y G and Yin L S 2015 Appl. Math. Comput. 257 274
[25] Forti M and Nistri P 2003 IEEE Trans. Circuits Syst. I-Regul. Pap. 50 1421
[26] Zhang L Z 2019 Physica A 531 121756
[27] Garcia-Ojalvo J and Roy R 2001 Phys. Rev. Lett. 86 5204
[28] Wu G C, Deng Z G, Baleanu D and Zeng D Q 2019 An Interdisciplinary Journal of Nonlinear Science 29 083103
[29] Li R and Chu T G 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 840
[30] Chen L P, Cao J D and Wu R C, Tenreiro Machado J A, Lopes A M and Yang H J 2017 Neural Netw. 94 76
[31] Ding Z X and Shen Y 2016 Neural Netw. 76 97
[32] Chen C, Li L X, Peng H P, Yang Y X and Li T 2017 Neurocomputing 235 83
[33] Chen J J, Zeng Z G and Jiang P 2014 Neural Netw. 51 1
[34] Zhang W W, Cao J D, Alsaedi A and Alsaadi F E 2017 Math. Probl. Eng. 2017 1804383
[35] Jia Y, Wu H Q and Cao J D 2019 Appl. Math. Comput. 30 124929
[36] Peng X and Wu H Q 2018 Neural Comput. Appl. 2018
[37] Zheng M W, Li L X, Peng H P, Xiao J H, Yang Y X, Zhang Y P and Zhao H. 2018 Commun. Nonlinear Sci. Numer. Simul. 59 272
[38] Xiao J Y, Zhong S M, Li Y T and Xu F 2017 Neurocomputing 219 431
[39] Li X F, Fang J, Zhang W B and Li H Y 2018 Neurocomputing 316 284
[40] Zheng M W, Li L X, Peng H P, Xiao J H, Yang Y X and Zhao H 2017 Nonlinear Dyn. 89 2641
[41] Velmurugan G, Rakkiyappan R and Cao J D 2016 Neural Netw. 73 36
[42] Diethelm K 2010 Springer Science & Business Media (Berlin: Springer-Verlag) p. 49
[43] Zhang S, Yu Y G and Wang H 2015 Nonlinear Anal.-Hybrid Syst. 16 104
[44] Gu Y J, Yu Y G and Wang H 2016 Journal of the Franklin Institute 353 3657
[45] Filippov A F 2013 Springer Science & Business Media (Netherlands: Springer) p. 48
[46] Aubin J and Cellina A 2012 Springer Science & Business Media (Berlin: Springer-Verlag) p. 139
[47] Li Y, Chen Y Q and Podlubny I 2009 Automatica 45 1965
[48] Li Y, Chen Y Q and Podlubny I 2010 Comput. Math. Appl. 59 1810
[49] Lam H and Leung F F 2006 Int. J. Bifur. Chaos 16 1435
[50] Bao H B and Cao J D 2015 Neural Netw. 63 1
[51] Peng X, Wu H Q and Cao J D 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 2123
[52] Peng X, Wu H Q, Song K and Shi J X 2017 Neural Netw. 94 46
[1] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[2] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[3] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[4] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[5] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[6] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[7] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[8] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[9] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[10] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[11] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[12] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[13] Effect of degree correlation on edge controllability of real networks
Shu-Lin Liu(刘树林) and Shao-Peng Pang(庞少鹏)†. Chin. Phys. B, 2020, 29(10): 100202.
[14] Hunting problems of multi-quadrotor systems via bearing-based hybrid protocols with hierarchical network
Zhen Xu(徐振), Xin-Zhi Liu(刘新芝), Qing-Wei Chen(陈庆伟), Zi-Xing Wu(吴梓杏). Chin. Phys. B, 2020, 29(5): 050701.
[15] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
No Suggested Reading articles found!