Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 040701    DOI: 10.1088/1674-1056/28/4/040701
GENERAL Prev   Next  

Coexistence and local Mittag-Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions

Yu-Jiao Huang(黄玉娇), Shi-Jun Chen(陈时俊), Xu-Hua Yang(杨旭华), Jie Xiao(肖杰)
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  

In this paper, coexistence and local Mittag-Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions are addressed. Because of the discontinuity of the activation function, Filippov solution of the neural network is defined. Based on Brouwer's fixed point theorem and definition of Mittag-Leffler stability, sufficient criteria are established to ensure the existence of (2k+3)n (k ≥ 1) equilibrium points, among which (k+2)n equilibrium points are locally Mittag-Leffler stable. Compared with the existing results, the derived results cover local Mittag-Leffler stability of both fractional-order and integral-order recurrent neural networks. Meanwhile discontinuous networks might have higher storage capacity than the continuous ones. Two numerical examples are elaborated to substantiate the effective of the theoretical results.

Keywords:  fractional-order recurrent neural network      local Mittag-Leffler stability      discontinuous activation function  
Received:  06 September 2018      Revised:  03 December 2018      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.30.Ks (Delay and functional equations)  
Fund: 

Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY18F030023, LY17F030016, and LY18F020028) and the National Natural Science Foundation of China (Grant Nos. 61503338, 61502422, and 61773348).

Corresponding Authors:  Yu-Jiao Huang     E-mail:  hyj0507@zjut.edu.cn

Cite this article: 

Yu-Jiao Huang(黄玉娇), Shi-Jun Chen(陈时俊), Xu-Hua Yang(杨旭华), Jie Xiao(肖杰) Coexistence and local Mittag-Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions 2019 Chin. Phys. B 28 040701

[1] Chua L O and Yang L 1988 IEEE Trans. Circ. Syst. 35 1273
[2] Zhang H, Wang Z and Liu D 2008 IEEE Trans. Neural Netw. 19 855
[3] Zhang H, Wang Z and Liu D 2014 IEEE Trans. Neural Netw. Learn. Syst. 25 1229
[4] Bao G, Zeng Z and Shen Y 2018 Neural Netw. 98 51
[5] Zheng Y J, Zhou X H, Sheng W G, et al. 2018 Neural Netw. 102 78
[6] Liang J, Gong W and Huang T 2016 Neural Netw. 84 125
[7] Zeng Z and Zheng W 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 1749
[8] Wang L and Chen T 2014 Neural Netw. 53 109
[9] Liu P, Zeng Z and Wang J 2018 IEEE Trans. Neural Netw. Learn. Syst. 29 3000
[10] Wan L and Wu A 2018 Neurocomputing 286 1
[11] Cheng C, Lin K and Shih C 2007 Physica D 225 61
[12] Cao J, Feng G and Wang Y 2008 Physica D 237 1734
[13] Wang L and Chen T 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1816
[14] Huang Y and Hu H 2015 Chin. Phys. B 24 120701
[15] Chen X, Zhao Z, Song Q, et al. 2017 Appl. Math. Comput. 294 18
[16] Dokoumetzidis A and Macheras P 2009 J. Pharmacokinet Pharmacodyn 36 165
[17] Heaviside O 1971 Electromagnetic Theory (New York: Chelsea)
[18] Zubair M, Mughal M and Naqvi Q 2011 Nonlin. Anal. Real World Appl. 12 2844
[19] Koeller R 1984 J. Appl. Mech. 51 299
[20] Jiang X and Xu M 2010 Physica A 389 3368
[21] Chen L, Chai Y, Wu R et al. 2013 Neurocomputing 111 190
[22] Kilbas A, Srivastava H and Trujillo J 2006 Theory and applications of fractional differential equations (Boston: Elsevier)
[23] Kaslik E and Sivasundaram S 2012 Neural Netw. 32 245
[24] Yu J, Hu C and Jiang H 2012 Neural Netw. 35 82
[25] Chen J, Zeng Z and Jiang P 2014 Neural Netw. 51 1
[26] Rakkiyappan R, Cao J and Velmurugan G 2015 IEEE Trans. Neural Netw. Learn. Syst. 26 84
[27] Wu A and Zeng Z 2016 Neural Netw. 74 73
[28] Liu P, Zeng Z and Wang J 2017 IEEE Trans. Syst., Man, Cybern. Syst. 47 2279
[29] Yang Y, He Y, Wang Y, et al. 2018 Neurocomputing 285 82
[30] Song C and Cao J 2014 Neurocomputing 142 494
[31] Stamova I 2014 Nonlinear Dyn. 77 1251
[32] Liu H, Li S and Wang H 2017 Chin. Phys. B 26 030504
[33] Xi Y, Yu Y, Zhang S, et al. 2018 Chin. Phys. B 27 010202
[34] Ding Z, Zeng Z and Wang L 2018 IEEE Trans. Neural Netw. Learn. Syst. 29 1477
[35] Forti M and Nistri P 2003 IEEE Trans. Circuits Syst. I 50 1421
[36] Forti M, Nistri P and Papini D 2005 IEEE Trans. Neural Netw. 16 1449
[37] Li L and Huang L 2009 Neurocomputing 72 3726
[38] Wang D and Huang L 2016 Nonlinear Dyn. 85 67
[39] Bao G and Zeng Z 2012 Neurocomputing 77 101
[40] Huang Y, Zhang H and Wang Z 2012 Neurocomputing 91 21
[41] Nie X and Zheng W 2016 IEEE Trans. Cybern. 46 679
[42] Filippov A 1988 “Differential equations with discontinuous righthand sides”, Mathematics and Its Applications (Soviet series) (Boston: Kluwer Academic)
[43] Podlubny I 1999 Fractional differential equations (San Diego: Academic Press)
[44] Brouwer L 1912 Mathmatische Annalen 71 97
[1] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
No Suggested Reading articles found!