Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 084202    DOI: 10.1088/1674-1056/22/8/084202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method

M K Tavassolya b c, H R Jalalia
a Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran;
b Photonics Research Group, Engineering Research Center, Yazd University, Yazd, Iran;
c The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran
Abstract  In this paper we try to introduce the ladder operators associated with the pseudoharmonic oscillator, after solving the corresponding Schrödinger equation by using the factorization method. The obtained generalized raising and lowering operators naturally lead us to the Dirac representation space of the system which is much easier to work with, in comparison to the functional Hilbert space. The SU(1,1) dynamical symmetry group associated with the considered system is exactly established through investigating the fact that the deduced operators satisfy appropriate commutation relations. This result enables us to construct two important and distinct classes of Barut-Girardello and Gilmore-Perelomov coherent states associated with the system. Finally, their identities as the most important task are exactly resolved and some of their nonclassical properties are illustrated, numerically.
Keywords:  pseudoharmonic oscillator      factorization method      Barut-Girardello coherent states      Gilmore-Perelomov coherent states      nonclassical properties  
Received:  12 December 2012      Revised:  30 January 2013      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  M K Tavassoly     E-mail:  mktavassoly@yazd.ac.ir

Cite this article: 

M K Tavassoly, H R Jalali Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method 2013 Chin. Phys. B 22 084202

[1] Morse P M 1929 Phys. Rev. 34 57
[2] Pöschl G and Teller E 1933 Z. Phys. 83 143
[3] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[4] Agboola D 2011 Acta Phys. Polomica A 120 371
[5] Dong S H, Lozada-Cassou M, Yu J, Jiménez-Ángeles F and Rivera A L 2007 Int. J. Quantum Chem. 107 366
[6] Landau L D and Lifshitz E M 1977 Quantum Mechanics: Non-Relativistic Theory, 3rd edn. (New York: Pergamon) p. 127
[7] Hall R L, Saad N and von Keviczky A 2002 J. Math. Phys. 43 94
[8] HallL R L and Saad N 2000 J. Phys. A: Math. Gen. 33 569
[9] Saad N, Hall R L and von Keviczky A 2003 J. Phys. A: Math. Gen. 36 487
[10] Goldman I I and Krivchenkov V D 1961 Problems in Quantum Mechanics (Oxford: Pergamon)
[11] Cheng Y F and Dai T Q 2007 Phys. Scr. 75 274
[12] Berkdemir C, Berkdemir A and Han J 2006 Chem. Phys. Lett. 417 326
[13] Ikhdair S M and Sever R 2007 Mol. J. Structure (THEOCHEM) 806 155
[14] Dong S H, Morales D and Ravelo J G 2007 Int. J. Mod. Phys. E 16 189
[15] Altug Arda and Ramazan Sever 2012 J. Math. Chem. 50 971
[16] Zarezadeh M and Tavassoly M K 2013 Chin. Phys. C 37 043106
[17] Fernandez D J 2012 SIGMA 8 041
[18] Fernandez D J, Nieto L M and Rosas-Ortiz O 1995 J. Phys. A: Math. Gen. 28 2693
[19] Fernandez D J, Nieto L M and Rosas-Ortiz O 1994 J. Phys. A: Math. Gen. 27 3547
[20] Fernandez D J, Hussin V and Rosas-Ortiz O 2007 J. Phys. A: Math. Theor. 40 6491
[21] Sbarba D and Hussin V 2007 J. Math. Phys. 48 012110
[22] Yang W X, Li J H, Jin L X and Zhan Z M 2004 Chin. Phys. Lett. 21 1745
[23] Feng M, Luo X L, Zhu X W, Shi L and Yan M 1998 Chin. Phys. 7 488
[24] Nieto M M and Simmons L M 1979 Phys. Rev. D 20 1321
[25] Nieto M M and Simmons L M 1979 Phys. Rev. D 20 1332
[26] Nieto M M and Simmons L M 1979 Phys. Rev. D 20 1342
[27] Manko V I, Marmo G, Sudarshan E C G and Zaccaria F 1997 Phys. Scr. 55 528
[28] Roknizadeh R and Tavassoly M K 2004 J. Phys. A: Math. Gen. 37 8111
[29] Roknizadeh R and Tavassoly M K 2005 J. Math. Phys. 46 042110
[30] Gilmore R 1972 Ann. Phys. m(NY) 74 391
[31] Perelomov A M 1972 Commun. Math. Phys. 26 222
[32] Barut A O and Girardello L 1971 Commun. Math. Phys. 21 41
[33] Zhou B Y, Deng L, Duan Y F, Yu L and Li G X 2012 Chin. Phys. B 21 090302
[34] Wang S, Zhang X Y and Fan H Y 2012 Chin. Phys. B 21 054206
[35] Wei W and Guo G C 1998 Chin. Phys. 7 174
[36] Wang J C, Liu S T and Wang Y Y 2010 Chin. Phys. B 19 074206
[37] Muhammad A A, Lin J, Liu S T, Ma A Q, Ma Z M and Qian Y 2007 Chin. Phys. 16 1351
[38] Nieto M M and Simmons L M Jr 1978 Phys. Rev. Lett. 41 207
[39] Fernandez D J 2006 AIP Conf. Proc. 809 80
[40] Fox R F and Choi M H 2001 Phys. Rev. A 64 042104
[41] Dello Sbarba L and Hussin V 2007 J. Math. Phys. 48 012110
[42] Kuru S and Negro J 2008 Ann. Phys. 323 413
[43] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[44] Khare A 2005 AIP Conf. Proc. 744 133
[45] Schrödinger E 1941 Proc. Roy. Irish Acad. Sect. A 46 9
[46] Schrödinger E 1941 Proc. Roy. Irish Acad. Sect. A 46 183
[47] Schrödinger E 1941 Proc. Roy. Irish Acad. Sect. A 47 53
[48] Dirac P M 1958 The Principles of Quantum Mechanics (Oxford: Oxford University Press)
[49] Infeld I and Hull T E 1951 Rev. Mod. Phys. 23 21
[50] Green H S 1968 Matrix Method in Quantum Mechanics (New York: Barnes and Noble)
[51] Sukumar C 1985 J. Phys. A: Math. Gen. 18 L57
[52] Sukumar C 1985 J. Phys. A: Math. Gen. 18 2917
[53] Ohanian H C 1990 Principles of Quantum Mechanics (Prentice Hall: Englewood Cliffs, NJ)
[54] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series, and Products, 5th edn. (New York: Academic Press)
[55] Miry S R and Tavassoly M K 2012 Phys. Scr. 85 035404
[56] Klauder J R, Penson K A and Sixdeniers J M 2001 Phys. Rev. A 64 013817
[57] Mathai A M and Saxena R K 1973 "Generalized Hypergeometric Functions with Applications in Statistics and Physicsal Sciences", Lecture Notes in Mathematics, Vol. 348 (Berlin: Spinger)
[58] Guo G C and Liang J Q 1994 Chin. Phys. 3 92
[59] Walls D F 1983 Nature 306 141
[60] Hillery M 1987 Opt. Commun. 62 135
[61] Mandel L 1979 Opt. Lett. 4 205
[1] Factorization method for inverse obstacle scattering problem in three-dimensional planar acoustic waveguides
Xue Qin(秦雪). Chin. Phys. B, 2018, 27(10): 100203.
[2] Exact solutions of the Klein--Gordon equation with Makarov potential and a recurrence relation
Zhang Min-Cang(张民仓) and Wang Zhen-Bang(王振邦). Chin. Phys. B, 2007, 16(7): 1863-1867.
[3] Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials
Chen Gang (陈刚), Chen Zi-Dong (陈子栋), Lou Zhi-Mei (楼智美). Chin. Phys. B, 2004, 13(3): 279-282.
No Suggested Reading articles found!