Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114202    DOI: 10.1088/1674-1056/26/11/114202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum statistical properties of photon-added spin coherent states

G Honarasa
Department of Physics, Shiraz University of Technology, Shiraz 71555-313, Iran
Abstract  The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical properties of photon-added spin coherent states such as photon number distribution, second-order correlation function and Wigner function are studied. It is found that the Wigner function shows the negativity in some regions and the second-order correlation function is less than unity. Therefore, the photon-added spin coherent state is a nonclassical state.
Keywords:  photon-added spin coherent states      photon number distribution      Wigner function  
Received:  19 April 2017      Revised:  13 June 2017      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.-w (Quantum mechanics)  
Corresponding Authors:  G Honarasa     E-mail:  honarasa@sutech.ac.ir

Cite this article: 

G Honarasa Quantum statistical properties of photon-added spin coherent states 2017 Chin. Phys. B 26 114202

[1] Weyl H 1928 Gruppentheorie und Quantenmechanik(Leipzig:Hirzel)
[2] Perelomov A M 1972 Commun. Math. Phys. 26 222
[3] Radcliffe J M 1971 J. Phys. A 4 313
[4] Yen L L and Monica K 2015 Am. J. Phys. 83 30
[5] Stone M and Park K S 2000 J. Math. Phys. 41 8025
[6] Aravind P K 1999 Am. J. Phys. 67 899
[7] Pletyukhov M, Amann Ch, Mehta M and Brack M 2002 Phys. Rev. Lett. 89 116601
[8] Novaes M 2005 Phys. Rev. A 72 042102
[9] Wang X 2001 J. Opt. B:Quantum Semiclass. Opt. 3 93
[10] Yang D, Wang X G and Wu L A 2005 Chin. Phys. Lett. 22 521
[11] Chen X, Zhang Z W, Zhao H, Wang N R, Yang R F and Feng K M 2016 Chin. Phys. Lett. 33 104203
[12] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[13] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[14] Sivakumar S 1999 J. Phys. A:Math. Gen. 32 3441
[15] Yuan H C, Xu X X and Fan H Y 2010 Chin. Phys. B 19 104205
[16] Popov D 2002 J. Phys. A:Math. Gen. 35 7205
[17] Berrada K 2015 J. Math. Phys. 56 072104
[18] Zeng K and Fang M F 2014 Chin. Phys. Lett. 31 114203
[19] Yang Z B and Wu H Z 2014 Chin. Phys. Lett. 31 024206
[20] Li H M, Xu X X, Yuan H C and Wang Z 2016 Chin. Phys. B 25 104203
[21] Pakniat R, Tavassoly M K and Zandi M H 2016 Chin. Phys. B 25 100303
[22] Zhang C Y, Li H, Pan G X and Sheng Z Q 2016 Chin. Phys. B 25 074202
[23] Scully M O and Zubairy M S 2001 Quantum Optics(Cambridge:Cambridge University Press)
[24] Hillary M, O'Connell R F, Scully M O and Wigner E P 1984 Phys. Rep. 106 121
[25] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303
[1] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[2] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[3] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[4] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[5] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[6] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[7] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[8] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[9] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[12] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[13] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
[14] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
[15] The Wigner distribution functions of coherent and partially coherent Bessel–Gaussian beams
Zhu Kai-Cheng(朱开成), Li Shao-Xin(李绍新), Tang Ying(唐英), Yu Yan(余燕), and Tang Hui-Qin(唐慧琴) . Chin. Phys. B, 2012, 21(3): 034201.
No Suggested Reading articles found!