|
|
Asymmetric W-shaped and M-shaped soliton pulse generated from a weak modulation in an exponential dispersion decreasing fiber |
Xiang-Shu Liu(刘祥树)1,2, Li-Chen Zhao(赵立臣)1,3, Liang Duan(段亮)1,3, Zhan-Ying Yang(杨战营)1,3, Wen-Li Yang(杨文力)3,4 |
1. School of Physics, Northwest University, Xi'an 710069, China; 2. Faculty of Science, Qinzhou University, Qinzhou 535000, China; 3. Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069, China; 4. Institute of Modern Physics, Northwest University, Xi'an 710069, China |
|
|
Abstract We study localized waves on continuous wave background in an exponential dispersion decreasing fiber with two orthogonal polarization states. We demonstrate that asymmetric W-shaped and M-shaped soliton pulse can be generated from a weak modulation on continuous wave background. The numerical simulation results indicate that the generated asymmetric soliton pulses are robust against small noise or perturbation. In particular, the asymmetric degree of the asymmetric soliton pulse can be effectively controlled by changing the relative frequency of the two components. This character can be used to generate other nonlinear localized waves, such as dark-antidark and antidark-dark soliton pulse pair, symmetric W-shaped and M-shaped soliton pulse. Furthermore, we find that the asymmetric soliton pulse possesses an asymmetric discontinuous spectrum.
|
Received: 25 July 2017
Revised: 17 August 2017
Accepted manuscript online:
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11475135), the Fund from Shaanxi Province Science Association of Colleges and Universities (Grant No. 20160216), and Guangxi Provincial Education Department Research Project, China (Grant No. 2017KY0776). |
Corresponding Authors:
Zhan-Ying Yang
E-mail: zyyang@nwu.edu.cn
|
Cite this article:
Xiang-Shu Liu(刘祥树), Li-Chen Zhao(赵立臣), Liang Duan(段亮), Zhan-Ying Yang(杨战营), Wen-Li Yang(杨文力) Asymmetric W-shaped and M-shaped soliton pulse generated from a weak modulation in an exponential dispersion decreasing fiber 2017 Chin. Phys. B 26 120503
|
[1] |
Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nat. Phys. 6 790
|
[2] |
Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497
|
[3] |
Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B and Dudley J M 2012 Sci. Rep. 2 463
|
[4] |
Zhong W P, Xie R H, Beli M, Petrovi N and Chen G 2008 Phys. Rev. A 78 023821
|
[5] |
Wang Y Y, Dai C Q and Wang X G 2014 Nonlinear Dyn. 77 1323
|
[6] |
Li Z D, Wu X, Li Q Y and He P B 2015 Chin. Phys. B 25 010507
|
[7] |
Liu Y K and Li B 2017 Chinese Physics Letters 34 010202
|
[8] |
Dai C Q, Chen R P, Wang Y Y and Fan Y 2017 Nonlinear Dyn. 87 1675
|
[9] |
Yang J K 1997 Physica D 108 92
|
[10] |
Kanna T and Lakshmanan M 2001 Phys. Rev. Lett. 86 5043
|
[11] |
He J S, Mei J and Li Y S 2007 Chin. Phys. Lett. 24 2157
|
[12] |
Dai C Q, Fan Y, Zhou G Q, Zheng J and Chen L 2016 Nonlinear Dyn. 86 999
|
[13] |
Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
|
[14] |
Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
|
[15] |
Chen S, Song L Y 2013 Phys. Rev. E 87 032910
|
[16] |
Zhao L C and Liu J 2013 Phys. Rev. E 87 013201
|
[17] |
Wang Y Y, Dai C Q, Zhou G Q, Fan Y and Chen L 2017 Nonlinear Dyn. 87 67
|
[18] |
Liu C, Yang Z Y, Zhao L C and Yang W L 2014 Phys. Rev. A 89 055803
|
[19] |
Kivshar Y and Agrawal G 2003 Optical Solitons:From Fibers to Photonic Crystals (London:Academic)
|
[20] |
Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
|
[21] |
Guo B L, Ling L M and Liu Q P 2012 Phys. Rev. E 85 026607
|
[22] |
Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M and Wabnitz S 2014 Phys. Rev. Lett. 113 034101
|
[23] |
Dai C Q, Zhou G Q and Zhang J F 2012 Phys. Rev. E. 85 016603
|
[24] |
Duan L, Yang Z Y, Zhao L C and Yang W L 2016 J. Mod. Opt. 63 1397
|
[25] |
Agrawal G 2007 Nonlinear Fiber Optics, 4th edn. (New York:Academic)
|
[26] |
Manakov S V 1974 Soviet Physics-JETP 38 248
|
[27] |
Smith N J, Doran N J, Forysiak W and Knox F M 1997 J. Lightwave Technol. 15 1808
|
[28] |
Porsezian K, Hasegawa A, Serkin V N, Belyaeva T L and Ganapathy R 2007 Phys. Lett. A 361 504
|
[29] |
Rajan M M, Hakkim J, Mahalingam A and Uthayakumar A 2013 Eur. Phys. J. D 67 150
|
[30] |
Hao R, Li L, Li Z, Xue W and Zhou G 2004 Opt. Commun. 236 79
|
[31] |
Chang C C, Sardesai H P and Weiner A M 1998 Opt. Lett. 23 283
|
[32] |
Yamamoto T and Nakazawa M 2001 Opt. Lett. 26 647
|
[33] |
Pelinovsky D E, Kevrekidis P G and Frantzeskakis D J 2003 Phys. Rev. Lett. 91 240201
|
[34] |
Centurion M, Porter M A, Kevrekidis P G and Psaltis D 2006 Phys. Rev. Lett. 97 033903
|
[35] |
Frisquet B, Kibler B, Fatome J, Morin P, Baronio F, Conforti M, Millot G and Wabnitz S 2015 Phys. Rev. A 92 053854
|
[36] |
Frisquet B, Kibler B, Morin P, Baronio F, Conforti M, Millot G and Wabnitz S 2016 Sci. Rep. 6 20785
|
[37] |
Hamner C, Chang J J, Engels P and Hoefer M A 2011 Phys. Rev. Lett. 106 065302
|
[38] |
Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904
|
[39] |
Yan Z Y 2011 Phys. Lett. A 375 4274
|
[40] |
Jia R X, Wang Y C, Liu W J and Lei M 2013 J. Mod. Opt. 60 1993
|
[41] |
Liu W J, Zhang Y, Pang L, Yan H, Ma G and Lei M 2016 Nonlinear Dyn. 86 1069
|
[42] |
Bogatyrev V A, Bubnov M M, Dianov E M, Kurkov A S, Mamyshev P V, Prokhorov A M and Chernikov S V 1991 J. Lightwave Technol. 9 561
|
[43] |
Hao R Y, Li L, Li Z and Zhou G S 2004 Phys. Rev. E 70 066603
|
[44] |
Wang Y Y, Dai C Q, Zhou G Q, Fan Y and Chen L 2017 Nonlinear Dyn. 87 67
|
[45] |
Xu T, Wang D H, Li M and Liang H 2014 Phys. Scr. 89 075207
|
[46] |
Yang Z Y, Zhao L C, Zhang T, Feng X Q and Yue R H 2011 Phys. Rev. E 83 066602
|
[47] |
Zhao L C, Li S C and Ling L M 2014 Phys. Rev. E 89 023210
|
[48] |
Huang X 2016 Phys. Lett. A 380 2136
|
[49] |
Zhao L C and Ling L M 2016 J. Opt. Soc. Am. B 33 850
|
[50] |
Zhao L C, Yang Z Y and Ling L M 2014 J. Phys. Soc. Jpn. 83 104401
|
[51] |
Workman J and Art Springsteen J 1998 Applied Spectroscopy (London:Academic Press)
|
[52] |
Hollas J M 2004 Modern Spectroscopy, 4th edn. (Chichester:John Wiley & Sons Ltd)
|
[53] |
Conforti M, Mussot A, Kudlinski A, Nodari S R, Dujardin G, De Biévre S and Trillo S 2016 Phys. Rev. Lett. 117 013901
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|