Abstract Rotational dynamics simulations of neutral O molecules driven by linearly, elliptically and circularly polarized femtosecond pulsed lasers are carried out using a full quantum time-dependent wave packet evolution method. Here, the direction of laser propagation is set along the z axis, and the polarization plane is restricted to the xy plane. The results indicate that the alignment of O molecules in the z direction is weakly affected by varying the ellipticity when the total laser intensity is held constant. For rotation within the xy plane, the linearly polarized laser significantly excites rotational motion, with the degree of excitation increasing as the ellipticity increases. In contrast, under the influence of a circularly polarized laser, the angular distribution of O molecules in the xy plane remains isotropic. Additionally, the effects of the initial rotational quantum number, the temperature of the O molecules and the nuclear spin on laser-induced alignment are discussed.
(Vibronic, rovibronic, and rotation-electron-spin interactions)
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602502) and the National Natural Science Foundation of China (Grant No. 12450404).
Corresponding Authors:
Xiao-Qing Hu
E-mail: xiaoqing-hu@foxmail.com
Cite this article:
Ting Xu(许婷), Jin-Peng Ma(马金鹏), Xiao-Qing Hu(胡晓青), Yin-Song Tang(唐寅淞), Si-Qi Pei(裴思琪), Cong-Cong Jia(贾聪聪), Yong-Wu(吴勇), and Jian-Guo Wang(王建国) Rotational dynamics of neutral O2 driven by linearly, elliptically and circularly polarized femtosecond pulsed lasers 2025 Chin. Phys. B 34 053301
[1] Rosca-Pruna F and Vrakking M J J 2001 Phys. Rev. Lett. 87 153902 [2] Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543 [3] Spanner M, Shapiro E A, and Ivanov M 2004 Phys. Rev. Lett. 92 093001 [4] Ramakrishna S and Seideman T 2007 Phys. Rev. Lett. 99 103001 [5] Anis F and Esry B D 2008 Phys. Rev. A 77 033416 [6] Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, Silvestri S De, and Stagira S 2011 Phys. Rev. A 77 033416 [7] Sondergaard A A, Zillich R E and Stapelfeldt H 2017 J. Chem. Phys. 147 074304 [8] Koch C P, Lemeshko M and Sugny D 2019 Rev. Mod. Phys. 91 035005 [9] Patel K, Butler P R, Ellis A M and Wheeler M D 2003 J. Chem. Phys. 119 909 [10] Zhu X L, Hu X Q, Yan S C, Peng Y G, Feng W T, Guo D L, Gao Y, Zhang S F, Cassimi A, Xu J W, Zhao D M, Dong D P, Hai B, Wu Y, Wang J G and Ma X W 2020 Nat. Commun. 11 2987 [11] Rohmund F, Campbell E E B, Knospe O, Seifert G and Schmidt R 1996 Phys. Rev. Lett. 76 3289 [12] Sakimoto K 2004 Phys. Rev. A 69 042710 [13] Liu Y Z and Zahed I 2018 Phys. Rev. Lett. 120 032001 [14] Litvinyuk I V, Lee K F, Dooley PW, Rayner D M, Villeneuve D M and Corkum P B 2003 Phys. Rev. Lett. 90 233003 [15] Hossain M M, Esaki N and Sakai H 2024 Phys. Rev. A 108 063109 [16] Pitzer M, Kunitski M, Johnson A S, Jahnke T, Sann H, Sturm F, Schmidt L P H, Schmidt-Böcking H, Dörner R, Stohner J, Kiedrowski J, Reggelin M, Marquardt S, Schiesser A, Berger R and Schöffler M S 2013 Science 341 1096 [17] Mizuse K, Kitano K, Hasegawa H and Ohshima Y 2015 Sci. Adv. 1 e1400185 [18] Lin K, Song Q Y, Gong X C, Ji Q Y, Pan H F, Ding J X, Zeng H P and Wu J 2015 Phys. Rev. A 92 013410 [19] Kranabetter L, Kristensen H H, Ghazaryan A, Schouder C A, Chatterley A S, Janssen P, Jensen F, Zillich R E, Lemeshko M and Stapelfeldt H 2023 Phys. Rev. Lett. 131 053201 [20] Bournazel M, Ma J, Billard F, Hertz E, Wu J, Boulet C, Hartmann J M and Faucher O 2023 Phys. Rev. A 107 023115 [21] Lu C X, Xu L, Zhou L R, Shi M H, Lu P F, Li W X, Dörner R, Lin K and Wu J 2024 Nat. Commun. 15 4360 [22] Seideman T 1995 J. Chem. Phys. 103 7887 [23] Rosca-Pruna F and Vrakking M J J 2001 Phys. Rev. Lett. 87 153902 [24] Dooley P W, Litvinyuk I V, Lee K F, Rayner D M, Spanner M, Villeneuve D M and Corkum P B 2003 Phys. Rev. A 68 023406 [25] Chatterley A S, Shepperson B and Stapelfeldt H 2017 Phys. Rev. Lett. 119 073202 [26] Trippel S, Wiese J, Mullins T and Küpper J 2018 J. Chem. Phys. 148 101103 [27] Chatterley A S, Baatrup M O, Schouder C A and Stapelfeldt H 2020 Phys. Chem. Chem. Phys. 22 3245 [28] Guo K Y, Hu X Q, Li M, Jia C C, Zhang S B, Cao C P, Xie W H, Cao W, Liu K L, Zhou Y M, Wu Y, Wang J G and Lu P X 2024 Ultrafast Sci. 4 1 [29] Wang Z Z, Hu X Q, Xue X R, Zhou S P, Li X K, Yang Y Z, Zhou J Q, Shu Z, Zhao B C, Yu X T, Gong M M, Wang Z P, Ma P, Wu Y, Chen X J, Wang J G, Ren X G, Wang C C and Ding, D J 2023 Nat. Commun. 14 5420 [30] Zhou J Q, Jia S K, Hu X Q, Wang E L, Xue X R, Wu Y, Wang J G, Dorn A and Ren X G 2023 Phys. Rev. Lett. 130 233001
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.