|
|
Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state |
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋) |
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China |
|
|
Abstract The SF radical and its singly charged cation and anion, SF+ and SF-, have been investigated on the MRCI/aug-cc-pVXZ (X = Q, 5, 6) levels of theory with Davidson correction. Both the core-valence correlation and the relativistic effect are considered. The extrapolating to the complete basis set (CBS) limit is adopted to remove the basis set truncation error. Geometrical parameters, potential energy curves (PECs), vibrational energy levels, spectroscopic constants, ionization potentials, and electron affinities of the ground electronic state for all these species are obtained. The information with respect to molecular characteristics of the SFn (n=-1, 0, +1) systems derived in this work will help to extend our knowledge and to guide further experimental or theoretical researches.
|
Received: 21 September 2015
Revised: 29 October 2015
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
31.15.vn
|
(Electron correlation calculations for diatomic molecules)
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304023 and 11447172), the Young and Middle-Aged Talent of Education Burea of Hubei Province, China (Grant No. Q20151307), and the Yangtze Youth Talents Fund of Yangtze University, China (Grant No. 2015cqr21). |
Corresponding Authors:
Song Li
E-mail: lsong@yangtzeu.edu.cn
|
Cite this article:
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋) Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state 2016 Chin. Phys. B 25 033101
|
[1] |
Coufal O 1998 J. Phys. D: Appl. Phys. 31 2025
|
[2] |
Manos D M and Flamm D L 1989 Plasma Etching: An Introduction (Boston: Academic)
|
[3] |
Carrington A, Currie G N, Miller T A and Levy D H 1969 J. Chem. Phys. 50 2726
|
[4] |
Lonardo G D and Trombetti A 1970 Trans. Faraday Soc. 66 2694
|
[5] |
Hildenbrand D L 1973 J. Phys. Chem. 77 897
|
[6] |
Kiang T and Zare R N 1980 J. Am. Chem. Soc. 102 4024
|
[7] |
Amano T and Hirota E 1973 J. Mol. Spectrosc. 45 417
|
[8] |
Endo Y, Saito S and Hirota E 1982 J. Mol. Spectrosc. 92 443
|
[9] |
Morino I and Yamada K M T 2001 J. Mol. Spectrosc. 207 10
|
[10] |
Endo Y, Nagai K, Yamada C and Hirota E 1983 J. Mol. Spectrosc. 97 213
|
[11] |
Reddy R R, Reddy A S R and Rao T V R 1986 J. Quant. Spectrosc. Radiat. Transfer 35 167
|
[12] |
O'Hare P A G and Wahl A C 1970 J. Chem. Phys. 53 2834
|
[13] |
Companion A L 1972 Theoret. Chim. Acta 25 268
|
[14] |
Staemmler V 1982 Theoret. Chim. Acta 62 69
|
[15] |
Ziegler T and Gutsev G L 1992 J. Chem. Phys. 96 7623
|
[16] |
King R A, Galbraith J M and Schaefer III H F 1996 J. Phys. Chem. 100 6061
|
[17] |
Jr. Bauschlicher C W and Ricca A 1998 J. Phys. Chem. A 102 4722
|
[18] |
Irikura K K 1995 J. Chem. Phys. 102 5357
|
[19] |
Cheung Y S, Chen Y J, Ng C Y, Chiu S W and Li W K 1995 J. Am. Chem. Soc. 117 9725
|
[20] |
Miller T M, Arnold S T and Viggiano A A 2003 Int. J. Mass Spectrom. 227 413
|
[21] |
živný O and Czernek J 1999 Chem. Phys. Lett. 308 165
|
[22] |
Nielsen I M B, Zou S L, Bowman J M and Janssen C L 2002 Chem. Phys. Lett. 352 26
|
[23] |
Czernek J and živný O 2004 Chem. Phys. 303 137
|
[24] |
Woon D E and Jr. Dunning T H 2009 J. Phys. Chem. A 113 7915
|
[25] |
Yang X and Boggs J E 2005 J. Chem. Phys. 122 194307
|
[26] |
Woon D E and Jr. Dunning T H 2009 Mol. Phys. 107 991
|
[27] |
Leiding J, Woon D E and Jr. Dunning T H 2012 J. Phys. Chem. A 116 1655
|
[28] |
Zhu Z L, Lang J H and Qiao H 2013 Acta Phys. Sin. 62 163103
|
[29] |
Baluja K L and Tossell J A 2003 J. Phys. B: At. Mol. Opt. Phys. 36 19
|
[30] |
Fisher E R, Kickel B L and Armentrout P B 1992 J. Chem. Phys. 97 4859
|
[31] |
Polak M L, Gilles M K and Lineberger W C 1992 J. Chem. Phys. 96 7191
|
[32] |
Peterson K A and Woods R C 1990 J. Chem. Phys. 92 7412
|
[33] |
Midda S and Das A K 2004 Int. J Quant. Chem. 98 447
|
[34] |
Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
|
[35] |
Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
|
[36] |
Werner H J, Knowles P J, Knizia G, et al. MOLPRO (ver. 2012.1), a Package of ab initio Programs
|
[37] |
Douglas M and Kroll N M 1974 Ann. Phys. 82 89
|
[38] |
Hess B A 1986 Phys. Rev. A 33 3742
|
[39] |
Peterson KA, Woon D E and Jr. Dunning T H 1994 J. Chem. Phys. 100 7410
|
[40] |
Feller D 1992 J. Chem. Phys. 96 6104
|
[41] |
Li S, Zheng R, Chen S J and Fan Q C 2015 Mol. Phys. 113 1433
|
[42] |
Li S, Zheng R, Chen S J, Zhu D S and Fan Q C 2014 Spectrochim. Acta Part A 133 735
|
[43] |
Li S, Chen S J, Zhu D S and Fan Q C 2013 Comput. Theor. Chem. 1017 136
|
[44] |
Murrell J N and Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 70 1552
|
[45] |
Le Roy R J Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels
|
[46] |
Hotop H and Lineberger W C 1985 J. Phys. Chern. Ref. Data 14 731
|
[47] |
Blondel C 1995 Phys. Scr. T58 31
|
[48] |
Zhang Y P, Cheng C H, Kim J T, Stanojevic J and Eyler E E 2004 Phys. Rev. Lett. 92 203003
|
[49] |
Zhang Y P, Song J P, Gan C L, Yan X A, Nie Z Q, Jiang T, Li L, Du K, Zhang X C, Lu K Q and Eyler E E 2006 Chin. Phys. 15 2288
|
[50] |
Zhang Y P, Gan C L, Song J P, Yu X J, Ma R Q, Ge H, Jiang T, Lu K Q and Eyler E E 2005 Chin. Phys. Lett. 22 1114
|
[51] |
Zhang Y P, Gan C L, Song J P, Yu X J, Ge H, Ma R Q, Li C S, Lu K Q and Eyler E E 2005 Chin. Phys. Lett. 22 1110
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|