Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 093102    DOI: 10.1088/1674-1056/22/9/093102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule

Wang Jie-Min (王杰敏), Liu Qiang (刘强)
Department of Physics & Electronic Information, Luoyang Normal College, Luoyang 471022, China
Abstract  The potential energy curves (PECs) of four electronic states (X1Σg+, e3Δu, a3Σu-, and d3Πg) of an As2 molecule are investigated employing the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent aug-cc-pV5Z basis set. The effect on PECs by the relativistic correction is taken into account. The way to consider the relativistic correction is to employ the second-order Douglas-Kroll Hamiltonian approximation. The correction is made at the level of a cc-pV5Z basis set. The PECs of the electronic states involved are extrapolated to the complete basis set limit. With the PECs, the spectroscopic parameters (Te, Re, ωe, ωexe, ωeye, αe, βe, γe, and Be) of these electronic states are determined and compared in detail with those reported in the literature. Excellent agreement is found between the present results and the experimental data. The first 40 vibrational states are studied for each electronic state when the rotational quantum number J equals zero. In addition, the vibrational levels, inertial rotation and centrifugal distortion constants of d3Πg electronic state are reported which are in excellent agreement with the available measurements. Comparison with the experimental data shows that the present results are both reliable and accurate.
Keywords:  spectroscopic parameter      molecular constant      relativistic correction      extrapolation  
Received:  02 January 2013      Revised:  20 March 2013      Accepted manuscript online: 
PACS:  31.50.-x (Potential energy surfaces)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  31.15.A  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11247254), the Program for Science and Technology Innovation Research Team in University of Henan Province, China (Grant No. 13IRTSTHN020), and the Program for Science and Technology of Henan Province, China (Grant Nos. 122300410331 and 12A140009).
Corresponding Authors:  Wang Jie-Min     E-mail:  wangjiemin_1980@163.com

Cite this article: 

Wang Jie-Min (王杰敏), Liu Qiang (刘强) Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule 2013 Chin. Phys. B 22 093102

[1] Arrington C A and Morse M D 2008 J. Phys. Chem. B 112 16182
[2] Maroulis G 2007 Chem. Phys. Lett. 444 44
[3] Heimbrook L A, Chestnoy N, Rasanen M, Schwartz G P and Bondybey V E 1985 J. Chem. Phys. 83 6091
[4] Gibson G E and Macfarlane A 1934 Phys. Rev. 46 1059
[5] Almy G M and Kinzer G D 1935 Phys. Rev. 47 721
[6] Kinzer G D and Almy G M 1937 Phys. Rev. 52 814
[7] Almy G M 1937 J. Phys. Chem. 41 47
[8] Mrozowski S and Santaram C 1967 J. Opt. Soc. Amer. 57 522
[9] Perdigon P, Martin F and d’Incan J 1970 J. Mol. Spectrosc. 36 341
[10] Perdigon P and d’Incan J 1970 Can. J. Phys. 48 1140
[11] Donovan R J and Strachan P 1971 Trans. Faraday Soc. 67 3407
[12] Martin F, Perdigon P and d’Incan J 1974 J Mol. Spectrosc. 50 45
[13] Martin F, Figuet J and Perdigon P 1975 J. Mol. Spectrosc. 57 319
[14] Perdigon P and Martin F 1980 J. Mol. Spectrosc. 83 40
[15] Wannous G, Effantin C, Martin F and D’Incan J 1982 J. Mol. Spectrosc. 91 1
[16] Dyke J M, Elbel S, Morris A and Stevens J C H 1986 J. Chem. Faraday Trans. 82 637
[17] Smilgys R V and Leone S R 1990 J. Vac. Sci. Technol. B 8 416
[18] Watanabe Y, Sakai Y and Kashiwagi H 1985 Chem. Phys. Lett. 120 363
[19] Andzelm J, Russo N and Salahub D R 1987 Chem. Phys. Lett. 142 169
[20] Huzinaga S, Seijo L, Barandiaran Z and Klobukowski M 1987 J. Chem. Phys. 86 2132
[21] Scuseria G E 1990 J. Chem. Phys. 92 6722
[22] Wang L S, Lee Y T, Shirley D A, Balasubramanian K and Feng P 1990 J. Chem. Phys. 93 6310
[23] Binning R C and Curtiss L A 1990 J. Comput. Chem. 11 1206
[24] Ballone P and Jones R O 1994 J. Chem. Phys. 100 4941
[25] Katsuki S 1995 Can. J. Chem. 73 696
[26] Mochizuki Y, Takada T, Sasaoka C, Usui A, Miyoshi E and Sakai Y 1994 Phys. Rev. B 49 4658
[27] Tanaka K and Mochizuki Y 1998 Theor. Chem. Acc. 98 165
[28] Martin J M L and Sundermann A 2001 J. Chem. Phys. 114 3408
[29] Deyonker N J, Peterson K A and Wilson A K 2007 J. Phys. Chem. A 111 11383
[30] Al-Saidi W A 2008 J. Chem. Phys. 129 064316
[31] Mochizuki Y and Tanaka K 1997 Chem. Phys. Lett. 274 264
[32] Balasubramanian K 1987 J. Mol. Spectrosc. 121 465
[33] Toscano M and Russo N 1992 Z. Phys. D 22 683
[34] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[35] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[36] Wilson A K, Woon D E, Peterson K A and Dunning T H 1999 J. Chem. Phys. 110 7667
[37] Wang J M, Sun J F and Shi D H 2010 Chin. Phys. B 19 113404
[38] Wang J M, Feng H Q, Sun J F and Shi D H 2012 Chin. Phys. B 21 023102
[39] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO Version 2008.1: A Package of ab initio Programs
[40] Karlström G, Lindh R, Malmqvist P Å, Roos B O, Ryde U, Veryazov V, Widmark P O, Cossi M, Schimmelpfennig B, Neogrady P and Seijo L 2003 Comp. Mater. Sci. 28 222
[41] Quiroz González J L M and Thompson D 1997 Comput. Phys. 11 514
[42] Reiher M and Wolf A 2004 J. Chem. Phys. 121 2037
[43] Wolf A, Reiher M and Hess B A 2002 J. Chem. Phys. 117 9215
[44] Müller T, Dallos M, Lischka H, Dubrovay Z and Szalay P G 2001 Theor. Chem. Acc. 105 227
[1] Transition frequencies between 2S and 2P states of lithium-like ions
Liming Wang(王黎明), Tongtong Liu(刘仝彤), Weiqing Yang(杨为青), and Zong-Chao Yan. Chin. Phys. B, 2023, 32(3): 033102.
[2] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[3] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[4] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
[5] Accurate spectroscopic constants of the lowest two electronic states in S2 molecule with explicitly correlated method
Changli Wei(魏长立), Xiaomei Zhang(张晓美), Dajun Ding(丁大军), Bing Yan(闫冰). Chin. Phys. B, 2016, 25(1): 013102.
[6] Study on the A2Π3/2u, B2Δ3/2u, and X2Π3/2g states of Cl2+ including its isotopologues
Wu Ling (吴玲), You Su-Ping (尤素萍), Shao Xu-Ping (邵旭萍), Chen Gang-Jin (陈钢进), Ding Ning (丁宁), Wang You-Mei (汪友梅), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2015, 24(8): 083301.
[7] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Xie An-Dong (谢安东), Yan Bing (闫冰), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(4): 043401.
[8] Accurate ab initio-based analytical potential energy function for S21Δg) via extrapolation to the complete basis set limit
Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田), Song Yu-Zhi (宋玉志). Chin. Phys. B, 2015, 24(1): 013101.
[9] Potential energy curves and spectroscopic properties of X2Σ+ and A2Π states of 13C14N
Liao Jian-Wen (廖建文), Yang Chuan-Lu (杨传路). Chin. Phys. B, 2014, 23(7): 073401.
[10] Global analysis of the Comet-tail system of 12C16O+
Shao Xu-Ping (邵旭萍), Zhao Min (赵敏), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2013, 22(7): 073302.
[11] Potential energy curve study on the 3Π electronic states of GaX (X=F, Cl, and Br) molecules
Cao Yun-Bin (曹云斌), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光). Chin. Phys. B, 2013, 22(12): 123401.
[12] Investigations of spectroscopic parameters and molecular constants for X1Σg+, w3Δu, and W1Δu electronic states of P2 molecule
Wang Jie-Min(王杰敏), Feng Heng-Qiang(冯恒强), Sun Jin-Feng(孙金锋), and Shi De-Heng(施德恒) . Chin. Phys. B, 2012, 21(2): 023102.
[13] Spectroscopic investigations on NO$^{ + }$($X^{1}\varSigma ^{ + }$, $a^{3}\varSigma ^{ + }$, $A^{1}\varPi$) ion using multi-reference configuration interaction method and correlation-consistent sextuple basis set augmented with diffuse functions #br#
Zhang Jin-Ping (张金平), Cheng Xin-Lu (程新路), Zhang Hong (张红), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2011, 20(6): 060401.
[14] MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) . Chin. Phys. B, 2011, 20(4): 043105.
[15] Accurate potential energy function and spectroscopic study of the X$^2\Sigma^+$, A$^2\Pi$ and B$^2\Sigma^+$ states of the CP radical
Liu Yu-Fang(刘玉芳) and Jia Yi(贾毅). Chin. Phys. B, 2011, 20(3): 033106.
No Suggested Reading articles found!