|
|
Line positions, intensities, and Einstein A coefficients for 3-0 band of 12C16O: A spectroscopy learning method |
Zhi-Xiang Fan(范志祥)1, Zhi-Zhang Ni(倪志樟)1, Jie-Jie He(贺洁洁)1, Yi-Fan Wang(王一凡)1, Qun-Chao Fan(樊群超)1,†, Jia Fu(付佳)1,‡, Yong-Gen Xu(徐勇根)1, Hui-Dong Li(李会东)1, Jie Ma(马杰)2, and Feng Xie(谢锋)3 |
1 School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China; 2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Laser Spectroscopy Laboratory, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; 3 Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China |
|
|
Abstract Based on the model- and data-driven strategy, a spectroscopy learning method that can extract the novel and hidden information from the line list databases has been applied to the R branch emission spectra of 3-0 band of the ground electronic state of 12C16O. The labeled line lists such as line intensities and Einstein A coefficients quoted in HITRAN2020 are collected to enhance the dataset. The quantified spectroscopy-learned spectroscopic constants is beneficial for improving the extrapolative accuracy beyond the measurements. Explicit comparisons are made for line positions, line intensities, Einstein A coefficients, which demonstrate that the model- and data-driven spectroscopy learning approach is a promising and an easy-to-implement strategy.
|
Received: 31 August 2021
Revised: 02 October 2021
Accepted manuscript online: 18 October 2021
|
PACS:
|
33.20.Vq
|
(Vibration-rotation analysis)
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
33.20.Sn
|
(Rotational analysis)
|
|
33.20.-t
|
(Molecular spectra)
|
|
Fund: Project supported by the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (Grant No. YBXYJSWL-ZD-2020-006), the Funds for Sichuan Distinguished Scientists of China (Grant Nos. 2019JDJQ0050 and 2019JDJQ0051), the National Natural Science Foundation of China (Grant Nos. 61722507 and 11904295), the National Undergraduate Innovation and Entrepreneurship Training Program of China (Grant No. S202110650046), the State Key Laboratory Open Fund of Quantum Optics and Quantum Optics Devices, Laser Spectroscopy Laboratory (Grant No. KF201811), and the Open Research Fund Program of the Collaborative Innovation Center of Extreme Optics (Grant No. KF2020003). |
Corresponding Authors:
Qun-Chao Fan, Jia Fu
E-mail: fanqunchao@mail.xhu.edu.cn;fujiayouxiang@126.com
|
Cite this article:
Zhi-Xiang Fan(范志祥), Zhi-Zhang Ni(倪志樟), Jie-Jie He(贺洁洁), Yi-Fan Wang(王一凡), Qun-Chao Fan(樊群超), Jia Fu(付佳), Yong-Gen Xu(徐勇根), Hui-Dong Li(李会东), Jie Ma(马杰), and Feng Xie(谢锋) Line positions, intensities, and Einstein A coefficients for 3-0 band of 12C16O: A spectroscopy learning method 2021 Chin. Phys. B 30 123301
|
[1] Lyons J R, Gharib-Nezhad E and Ayres T R 2018 Nat. Commun. 9 908 [2] Ayres T R, Lyons J R, Ludwig H G, Caffau E and Wedemeyer-Böhm S 2013 Astrophys. J. 765 1 [3] Farrenq R, Guelachvili G, Sauval A J, Grevesse N and Farmer C B 1991 J Mol. Spectrosc. 149 375 [4] Picqué N and Guelachvili G 1997 J Mol. Spectrosc. 185 244 [5] Picqué N, Guelachvili G Dana V and Mandin J Y 2000 J Mol. Spectrosc. 517-518 427 [6] Henningsen J, Simonsen H, Mogelberg T and Trudso E 1999 J Mol. Spectrosc. 193 354 [7] Sung K and Varanasi P 2004 J. Quant. Spectrosc. Radiat. Transfer 83 445 [8] Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M and Campargue A 2015 J. Quant. Spectrosc. Radiat. Transfer 154 35 [9] Cygan A, Wcisło P, Wójtewicz S, Kowzan G, Zaborowski M, Charczun D, Bielska K, Trawiński R S, Ciuryło R, Masłowski P and Lisak D 2019 Opt. Express 27 21810 [10] Cygan A, Wójtewicz S, Kowzan G, Zaborowski M, Wcisło P, Nawrocki J, Krehlik P, Śliwczyński Ł, Lipiński M, Masłowski P, Ciuryło R and Lisak D 2016 J. Chem. Phys. 144 214202 [11] Wang J, Hu C L, Liu A W, Sun Y R, Tan Y and Hu S M 2021 J. Quant. Spectrosc. Radiat. Transfer 270 107717 [12] Goorvitch D 1994 Astrophys. J. Suppl. Ser. 95 535 [13] Velichko T I, Mikhailenko S N and Tashkun S A 2012 J. Quant. Spectrosc. Radiat. Transfer 113 1643 [14] Coxon J A and Hajigeorgiou P G 2004 J. Chem. Phys. 121 2992 [15] Li G, Gordon I E, Rothman L S, Tan Y, Hu S M, Kassi S, Campargue A and Medvedev E S 2015 Astrophys. J. Supple. Ser. 216 15 [16] Perevalov V I and Karlovets E V 2019 J. Mol. Spectrosc. 364 111184 [17] Borkov Yu G, Solodov A M, Solodov A A, Petrova T M, Karlovets E V and Perevalov V I 2020 J. Quant. Spectrosc. Radiat. Transfer 253 107064 [18] Fu J, Long S S, Jian J, Fan Z X, Fan Q C, Xie F, Zhang Y and Ma J 2020 Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 239 118363 [19] Gordon I E, Rothman L S, Hargreaves R J, et al. 2021 J. Quantum Spectrosc. Radiat. Transfer 277 107949 [20] Dunham J L 1932 Phys. Rev. 41 721 [21] Herzberg G and Mrozowski S 1950 Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (New York:Nostrand D Van Printing) [22] Sun W G, Fan Q C, Li H D and Feng H 2011 Spectrochim. Acta Part A 79 35 [23] Šimečková M, Jacquemart D, Rothman L S and Gamache R R 2006 J. Quant. Spectrosc. Radiat. Transfer 98 130 [24] Le Roy R J 2007 LEVEL 8.0: University of Waterloo Chemical physics research report CP-663[25] Fan Z X, He J J, Ni Z Z, Fan Q C, Fu J, Xu Y G, Li H D, Ma J and Xie F 2021 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 264 120278[26] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quantum Spectrosc. Radiat. Transfer 203 3[27] Winnewisser G, Belov S P, Klaus Th and Schieder C W Jr 1997 J. Mol. Spectrosc. 184 468[28] Western C M 2017 J. Quant. Spectrosc. Radiat. Transfer 186 221[29] Langhoff S R and Bauschlicher Jr. C W 1995 J. Chem. Phys. 102 5220 [30] Huré J M and Roueff E 1996 Astron. Astrophys. Suppl. Ser. 117 561 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|