|
|
Highly sensitive photoassociation spectroscopy of ultracold 23Na133Cs molecular long-range states below the 3S1/2+6P3/2 limit |
Yanyan Liu(刘艳艳)1,2, Jizhou Wu(武寄洲)1,2, Wenliang Liu(刘文良)1,2, Xiaofeng Wang(王晓锋)1,2, Wenhao Wang(王文浩)1,2, Jie Ma(马杰)1,2, Liantuan Xiao(肖连团)1,2, Suotang Jia(贾锁堂)1,2 |
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We present high resolution photoassociation spectroscopy of ultracold 23Na133Cs molecules in a long-range c3∑+ state below the (3S1/2 + 6P3/2) asymptote. We perform photoassociation spectroscopy in a dual-species magneto-optical trap (MOT) and detect the photoassociation resonances using trap-loss spectroscopy. By fitting the experimental data with the semi-classical LeRoy-Bernstein formula, we deduce the long-range molecular coefficient C6 and derive the empirical potential energy curve in the long-range region.
|
Received: 27 September 2017
Revised: 23 October 2017
Accepted manuscript online:
|
PACS:
|
37.10.Pq
|
(Trapping of molecules)
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
33.80.Wz
|
(Other multiphoton processes)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the ChangJiang Scholars and Innovative Research Team in the University of the Ministry of Education of China (Grant No. IRT13076), the National Natural Science Foundation of China (Grant Nos. 91436108, 61378014, 61675121, 61705123, and 11434007), the Fund for Shanxi "1331 Project" Key Subjects Construction, China, and the Foundation for Outstanding Young Scholars of Shanxi Province, China (Grant No. 201601D021001). |
Corresponding Authors:
Jizhou Wu
E-mail: wujz@sxu.edu.cn
|
Cite this article:
Yanyan Liu(刘艳艳), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Xiaofeng Wang(王晓锋), Wenhao Wang(王文浩), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂) Highly sensitive photoassociation spectroscopy of ultracold 23Na133Cs molecular long-range states below the 3S1/2+6P3/2 limit 2017 Chin. Phys. B 26 123702
|
[1] |
Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
|
[2] |
Roy R, Green A, Bowler R and Gupta S 2017 Phys. Rev. Lett. 118 055301
|
[3] |
Flambaum V V and Kozlov M G 2007 Phys. Rev. Lett. 99 150801
|
[4] |
DeMille D 2002 Phys. Rev. Lett. 88 067901
|
[5] |
Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Kishimoto T, Ueda M and Inouye S 2010 Phys. Rev. Lett. 105 203001
|
[6] |
Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R and Weidemüller M 2008 Phys. Rev. Lett. 101 133004
|
[7] |
Chang X F, Ji Z H, Yuan J P, Zhao Y T, Yang Y G, Xiao L T and Jia S T 2013 Chin. Phys. B 22 093701
|
[8] |
Wu J Z, Ma J, Ji Z H, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Xiao L T and Jia S T 2012 Chin. Phys. B 21 093701
|
[9] |
Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhao Y T, Wang L R, Xiao L T and Jia S T 2012 Chin. Phys. B 21 043404
|
[10] |
Ma J, Li Y Q, Liu W L, Chen P, Feng G S, Hu C Y, Wu J Z, Xiao L T and Jia S T 2014 Opt. Express 22 3754
|
[11] |
DeMille D, Sainis S, Sage J, Bergeman T, Kotochigova S and Tiesinga E 2008 Phys. Rev. Lett. 100 043202
|
[12] |
Aymar M and Dulieu O 2005 J. Chem. Phys. 122 204302
|
[13] |
Haimberger C, Kleinert J, Bhattacharya M and Bigelow N P 2004 Phys. Rev. A 70 021402(R)
|
[14] |
Zabawa P, Wakim A, Haruza M and Bigelow N P 2011 Phys. Rev. A 84 061401(R)
|
[15] |
Grochola A, Kowalczyk P, Szczepkowski J, Jastrzebski W, Wakim A, Zabawa P and Bigelow N P 2011 Phys. Rev. A 84 012507
|
[16] |
Wakim A, Zabawa P and Bigelow N P 2011 Phys. Chem. Chem. Phys. 13 18887
|
[17] |
Tiesinga E, Jones K M, Lett P D, Volz U, Williams C J and Julienne P S 2005 Phys. Rev. A 71 052703
|
[18] |
Wu J Z, Ma J, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Chen G, Xiao L T and Jia S T 2011 Phys. Chem. Chem. Phys. 13 18921
|
[19] |
Liu W L, Wu J Z, Ma J, Li P, Sovkov V B, Xiao L T and Jia S T 2016 Phys. Rev. A 94 032518
|
[20] |
Liu W L, Wang X F, Wu J Z, Su X L, Wang S, Sovkov V B, Ma J, Xiao L T and Jia S T 2017 Phys. Rev. A 96 022504
|
[21] |
LeRoy R J and Bernstein R B 1970 J. Chem. Phys. 52 3869
|
[22] |
Shaffer J P, Chalupczak W and Bigelow N P 1999 Phys. Rev. A 60 3365
|
[23] |
Ma J, Wang L R, Zhao Y T, Xiao L T and Jia S T 2009 J. Mol. Spectrosc. 255 106
|
[24] |
Abraham E R I, Ritchie N W M, McAlexander W I and Hulet R G 1995 J. Chem. Phys. 103 7773
|
[25] |
Zabawa P J 2012 "Production of Ultracold, Absolute Vibrational Ground State NaCs Molecules", Ph. D. Dissertation (New York:University of Rochester of New York)
|
[26] |
Marinescu M and Sadeghpour H R 1999 Phys. Rev. A 59 390
|
[27] |
Movre M and Beuc R 1985 Phys. Rev. A 31 2957
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|