Abstract The Zeeman-hyperfine-rotational spectra of KRb within its vibronic ground state at a magnetic field of 545.9 G are investigated by adopting the latest molecular constants available, and the results are in good agreement with the experimental observation made by Ospelkaus et al. [Phys. Rev. Lett. 104 030402 (2010)]. However, the calculated spectra generally shift by kHz from the experimental ones, which implies the inaccuracy of the effective rotational constant. Therefore, we refit the spectra and obtain a new kHz, which reduces the overall root-mean-square deviation from 10.8 kHz to 7.9 kHz. Furthermore, the pure hyperfine spectra within the and 1 rotational states are simulated. We find that the scalar nuclear spin-spin interaction dominates the hyperfine splitting of despite it being slightly indirectly affected by the nuclear electric quadruple interaction due to the rotational perturbation, while the nuclear electric quadrupole interactions dominate the splitting, and the scalar and tensor nuclear spin-spin interactions also affect the splitting of . The detailed hyperfine-rotational perturbations are studied. Therefore, the scalar and tensor nuclear spin-spin interaction constants can be precisely determined by simultaneously measuring the pure hyperfine radio-frequency spectra of the and 1 states in the vibronic ground state.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12004199).
Corresponding Authors:
Xu-Ping Shao, Xiao-Hua Yang
E-mail: xuping1115@ntu.edu.cn;xhyang@ntu.edu.cn
Cite this article:
Qi Ouyang(欧阳琪), Xu-Ping Shao(邵旭萍), Yun-Xia Huang(黄云霞), and Xiao-Hua Yang(杨晓华) Pure hyperfine spectra of KRb in its vibronic ground state: Towards the determination of nuclear spin-spin interaction 2025 Chin. Phys. B 34 053302
[1] Hughes M, Frye M D, Sawant R, Bhole G, Jones J A, Cornish S L, Tarbutt M R, Hutson J M, Jaksch D and Mur-Petit J 2020 Phys. Rev. A 101 062308 [2] DeMille D 2002 Phys. Rev. Lett. 88 067901 [3] Yelin S F, Kirby K and Côté R 2006 Phys. Rev. A 74 050301 [4] McDonald M, McGuyer B H, Apfelbeck F, Lee C H, Majewska I, Moszynski R and Zelevinsky T 2016 Nature 535 122 [5] Hudson E R, Lewandowski H J, Sawyer B C and Ye J 2006 Phys. Rev. Lett. 96 143004 [6] DeMille D, Doyle J M and Sushkov A O 2017 Science 357 990 [7] Shuman E S, Barry J F and Demille D 2010 Nature 467 820 [8] Ding S Q, Wu Y W, Finneran I A, Burau J J and Ye J 2020 Phys. Rev. X 10 021049 [9] Zhelyazkova V, Cournol A,Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 053416 [10] Zhang Y H, Zeng Z X, Liang Q, Bu W H and Yan B 2022 Phys. Rev. A 105 033307 [11] Ni K K, Ospelkaus S, de Miranda M H, Pe’er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231 [12] Molony P K, Gregory P D, Ji Z H, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301 [13] Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Bouloufa-Maafa N, Quemener G, Dulieu O and Wang D 2016 Phys. Rev. Lett. 116 205303 [14] LiuW,Wu J, Ma J, Li P, Sovkov V B, Xiao L and Jia S 2016 Phys. Rev. A 94 032518 [15] Wu J, Liu W, Wang X, Ma J, Li D, Sovkov V B, Xiao L and Jia S 2018 J. Chem. Phys. 148 174304 [16] Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B and Pan J W 2019 Science 363 261 [17] De Marco L, Valtolina G, Matsuda K, Tobias W G, Covey J P and Ye J 2019 Science 363 853 [18] Duda M, Chen X Y, Schindewolf A, Bause R, von Milczewski J, Schmidt R, Bloch I and Luo X Y 2023 Nat. Phys. 19 720 [19] Bigagli N, Yuan W J, Zhang S W, Bulatovic B, Karman T, Stevenson I and Will S 2024 Nature 631 289 [20] Hudson J J, Kara D M, Smallman I J, Sauer B E, TarbuttMR and Hinds E A 2011 Nature 473 493 [21] Tarbutt M R, Sauer B E, Hudson J J and Hinds E A 2013 New J. Phys. 15 053034 [22] Parker R H, Yu C H, Zhong W C, Estey B and Müller H 2018 Science 360 191 [23] Turro N J 1983 Proc. Natl. Acad. Sci. USA 80 609 [24] Aldegunde J, Rivington B A, Żuchowski P S and Hutson J M 2008 Phys. Rev. A 78 033434 [25] Aldegunde J, Ran H and Hutson J M 2009 Phys. Rev. A 80 043410 [26] Ran H, Aldegunde J and Hutson J M 2010 New J. Phys. 12 043015 [27] Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B,Wang D, de Miranda M H, Bohn J L, Ye J and Jin D S 2010 Phys. Rev. Lett. 104 030402 [28] Wang D F, Shao X P, Huang Y X, Li C L and Yang X H 2021 Chin. Phys. B 30 113301 [29] Ouyang Q, Chen R, Shao X P, Huang Y X and Yang X H 2025 Int. J. Mod. Phys. B [30] Chen R, Shao X P, Huang Y X and Yang X H 2023 Acta Phys. Sin. 72 043301 (in Chinese)
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.