Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 053302    DOI: 10.1088/1674-1056/adbdc1
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Pure hyperfine spectra of KRb in its vibronic ground state: Towards the determination of nuclear spin-spin interaction

Qi Ouyang(欧阳琪), Xu-Ping Shao(邵旭萍)†, Yun-Xia Huang(黄云霞), and Xiao-Hua Yang(杨晓华)‡
School of Physical Science and Technology, Nantong University, Nantong 226019, China
Abstract  The Zeeman-hyperfine-rotational spectra of 40K87Rb within its vibronic ground state at a magnetic field of 545.9 G are investigated by adopting the latest molecular constants available, and the results are in good agreement with the experimental observation made by Ospelkaus et al. [Phys. Rev. Lett. 104 030402 (2010)]. However, the calculated spectra generally shift by 3.6 kHz from the experimental ones, which implies the inaccuracy of the effective rotational constant. Therefore, we refit the spectra and obtain a new Beff=1113952(1) kHz, which reduces the overall root-mean-square deviation from 10.8 kHz to 7.9 kHz. Furthermore, the pure hyperfine spectra within the J=0 and 1 rotational states are simulated. We find that the scalar nuclear spin-spin interaction dominates the hyperfine splitting of J=0 despite it being slightly indirectly affected by the nuclear electric quadruple interaction due to the rotational perturbation, while the nuclear electric quadrupole interactions dominate the splitting, and the scalar and tensor nuclear spin-spin interactions also affect the splitting of J=1. The detailed hyperfine-rotational perturbations are studied. Therefore, the scalar and tensor nuclear spin-spin interaction constants can be precisely determined by simultaneously measuring the pure hyperfine radio-frequency spectra of the J=0 and 1 states in the vibronic ground state.
Keywords:  pure hyperfine spectrum      transition dipole moment      40K87Rb  
Received:  16 January 2025      Revised:  23 February 2025      Accepted manuscript online:  07 March 2025
PACS:  33.20.Bx (Radio-frequency and microwave spectra)  
  33.70.Ca (Oscillator and band strengths, lifetimes, transition moments, and Franck-Condon factors)  
  33.25.+k (Nuclear resonance and relaxation)  
  33.15.Pw (Fine and hyperfine structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12004199).
Corresponding Authors:  Xu-Ping Shao, Xiao-Hua Yang     E-mail:  xuping1115@ntu.edu.cn;xhyang@ntu.edu.cn

Cite this article: 

Qi Ouyang(欧阳琪), Xu-Ping Shao(邵旭萍), Yun-Xia Huang(黄云霞), and Xiao-Hua Yang(杨晓华) Pure hyperfine spectra of KRb in its vibronic ground state: Towards the determination of nuclear spin-spin interaction 2025 Chin. Phys. B 34 053302

[1] Hughes M, Frye M D, Sawant R, Bhole G, Jones J A, Cornish S L, Tarbutt M R, Hutson J M, Jaksch D and Mur-Petit J 2020 Phys. Rev. A 101 062308
[2] DeMille D 2002 Phys. Rev. Lett. 88 067901
[3] Yelin S F, Kirby K and Côté R 2006 Phys. Rev. A 74 050301
[4] McDonald M, McGuyer B H, Apfelbeck F, Lee C H, Majewska I, Moszynski R and Zelevinsky T 2016 Nature 535 122
[5] Hudson E R, Lewandowski H J, Sawyer B C and Ye J 2006 Phys. Rev. Lett. 96 143004
[6] DeMille D, Doyle J M and Sushkov A O 2017 Science 357 990
[7] Shuman E S, Barry J F and Demille D 2010 Nature 467 820
[8] Ding S Q, Wu Y W, Finneran I A, Burau J J and Ye J 2020 Phys. Rev. X 10 021049
[9] Zhelyazkova V, Cournol A,Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 053416
[10] Zhang Y H, Zeng Z X, Liang Q, Bu W H and Yan B 2022 Phys. Rev. A 105 033307
[11] Ni K K, Ospelkaus S, de Miranda M H, Pe’er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[12] Molony P K, Gregory P D, Ji Z H, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301
[13] Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Bouloufa-Maafa N, Quemener G, Dulieu O and Wang D 2016 Phys. Rev. Lett. 116 205303
[14] LiuW,Wu J, Ma J, Li P, Sovkov V B, Xiao L and Jia S 2016 Phys. Rev. A 94 032518
[15] Wu J, Liu W, Wang X, Ma J, Li D, Sovkov V B, Xiao L and Jia S 2018 J. Chem. Phys. 148 174304
[16] Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B and Pan J W 2019 Science 363 261
[17] De Marco L, Valtolina G, Matsuda K, Tobias W G, Covey J P and Ye J 2019 Science 363 853
[18] Duda M, Chen X Y, Schindewolf A, Bause R, von Milczewski J, Schmidt R, Bloch I and Luo X Y 2023 Nat. Phys. 19 720
[19] Bigagli N, Yuan W J, Zhang S W, Bulatovic B, Karman T, Stevenson I and Will S 2024 Nature 631 289
[20] Hudson J J, Kara D M, Smallman I J, Sauer B E, TarbuttMR and Hinds E A 2011 Nature 473 493
[21] Tarbutt M R, Sauer B E, Hudson J J and Hinds E A 2013 New J. Phys. 15 053034
[22] Parker R H, Yu C H, Zhong W C, Estey B and Müller H 2018 Science 360 191
[23] Turro N J 1983 Proc. Natl. Acad. Sci. USA 80 609
[24] Aldegunde J, Rivington B A, Żuchowski P S and Hutson J M 2008 Phys. Rev. A 78 033434
[25] Aldegunde J, Ran H and Hutson J M 2009 Phys. Rev. A 80 043410
[26] Ran H, Aldegunde J and Hutson J M 2010 New J. Phys. 12 043015
[27] Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B,Wang D, de Miranda M H, Bohn J L, Ye J and Jin D S 2010 Phys. Rev. Lett. 104 030402
[28] Wang D F, Shao X P, Huang Y X, Li C L and Yang X H 2021 Chin. Phys. B 30 113301
[29] Ouyang Q, Chen R, Shao X P, Huang Y X and Yang X H 2025 Int. J. Mod. Phys. B
[30] Chen R, Shao X P, Huang Y X and Yang X H 2023 Acta Phys. Sin. 72 043301 (in Chinese)
[1] Low-lying electronic states of osmium monoxide OsO
Wen Yan(严汶) and Wenli Zou(邹文利). Chin. Phys. B, 2023, 32(11): 113101.
[2] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[3] Molecular opacities of low-lying states of oxygen molecule
Gui-Ying Liang(梁桂颖), Yi-Geng Peng(彭裔耕), Rui Li(李瑞), Yong Wu(吴勇), Jian-Guo Wang(王建国). Chin. Phys. B, 2020, 29(2): 023101.
[4] Molecule opacities of X2Σ+, A2Π, and B2Σ+ states of CS+
Xiao-He Lin(林晓贺), Gui-Ying Liang(梁桂颖), Jian-Guo Wang(王建国), Yi-Geng Peng(彭裔耕), Bin Shao(邵彬), Rui Li(李瑞), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(5): 053101.
[5] Explicitly correlated configuration interaction investigation on low-lying states of SiO+ and SiO
Rui Li(李瑞), Gui-Ying Liang(梁桂颖), Xiao-He Lin(林晓贺), Yu-Hao Zhu(朱宇豪), Shu-Tao Zhao(赵书涛), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(4): 043102.
[6] Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods
Yun-Guang Zhang(张云光), Hua Zhang(张华), Ge Dou(窦戈). Chin. Phys. B, 2017, 26(9): 093101.
[7] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[8] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[9] Spectroscopic properties and radiative lifetimes of SiTe:A high-level multireference configuration interaction investigation
Li Rui (李瑞), Zhang Xiao-Mei (张晓美), Jin Ming-Xing (金明星), Xu Hai-Feng (徐海峰), Yan Bing (闫冰). Chin. Phys. B, 2014, 23(5): 053101.
[10] Multireference calculations on low-lying states and X3Πu-3Πg absorption spectra of indium dimer
Zhou Ling-Song (周凌松), Yan Bing (闫冰), Jin Ming-Xing (金明星). Chin. Phys. B, 2013, 22(4): 043102.
[11] Coherent excitons at different orientation arrangements of local transition dipole moments in circular light-harvesting complexes
Chu Qian-Jin(储谦谨), Yin Hua-Wei(尹华伟), and Weng Yu-Xiang(翁羽翔). Chin. Phys. B, 2007, 16(10): 3052-3058.
No Suggested Reading articles found!