Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 058702    DOI: 10.1088/1674-1056/adbb5b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tunable working bandwidth terahertz switch based on magnetic valley photonic crystal

Mingxia Hou(侯铭霞)1,3, Hongming Fei(费宏明)1,2,3,†, Han Lin(林瀚)4, and Mingda Zhang(张明达)1,3
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China;
3 Shanxi Key Laboratory of Precision Measurement Physics, Taiyuan University of Technology, Taiyuan 030024, China;
4 Centre for Atomaterials and Nanomanufacturing, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
Abstract  Terahertz (THz) switches are essential components of THz communication systems. THz switches based on conventional waveguides and photonic crystal structures are sensitive to manufacturing defects and sharp bending, resulting in high scattering losses. In addition, THz switches with tunable working bandwidths have not yet been demonstrated. Here, we design THz switches based on a topological valley photonic crystal (VPC) structure using magnetic materials, which can achieve high forward transmittance based on the unique spin-valley locking effect. The broad working bandwidth allows selective turning on and off at a designed wavelength region by controlling the applied magnetic field. The designed THz switch can achieve an extinction ratio of up to 31.66 dB with an insertion loss of less than 0.13 dB. The 3-dB bandwidth is up to 49 GHz. This tunable THz switch can be experimentally fabricated by current fabrication techniques and thus can find broad applications in THz communication systems.
Keywords:  terahertz switch      magnetic material      valley photonic crystal      tunable bandwidth  
Received:  11 January 2025      Revised:  20 February 2025      Accepted manuscript online:  28 February 2025
PACS:  87.50.U-  
  85.70.Ay (Magnetic device characterization, design, and modeling)  
  42.70.Qs (Photonic bandgap materials)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404201), Australia Research Council (Grant Nos. DP220100603 and FT220100559), the National Natural Science Foundation of China (Grant No. U23A20375), the Natural Science Foundation of Shanxi Province (Grant No. 202403021211011), Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2024-032), Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (Grant No. 20240006), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF202402), Basic Scientific Research Conditions and Major Scientific Instrument and Equipment Development of Anhui Science and Technology Department (Grant No. 2023YFF0715700), Key Research Project of Shanxi Province (Grant No. 202302150101001), and Linkage Project Scheme (Grant Nos. LP210200345 and LP210100467).
Corresponding Authors:  Hongming Fei     E-mail:  feihongming@tyut.edu.cn

Cite this article: 

Mingxia Hou(侯铭霞), Hongming Fei(费宏明), Han Lin(林瀚), and Mingda Zhang(张明达) Tunable working bandwidth terahertz switch based on magnetic valley photonic crystal 2025 Chin. Phys. B 34 058702

[1] Sheikh F, Zantah Y, Mabrouk I B, Alissa M, Barowski J, Rolfes I and Kaiser T 2021 IEEE Trans. Antennas Propag. 69 7820
[2] Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B L, Fujita M, Nagatsuma T and Singh R 2020 Nat. Photonics 14 446
[3] Rappaport T S, Xing Y C, Kanhere O, Ju S H, Madanayake A, Mandal S, Alkhateeb A and Trichopoulos G C 2019 IEEE Access 7 78729
[4] Nagatsuma T, Ducournau G and Renaud C C 2016 Nat. Photonics 10 371
[5] LiWL, Hu X M,Wu J B, Fan K B, Chen BW, Zhang C H, HuW, Cao X, Jin B B, Lu Y Q, Chen J and Wu P H 2022 Light-Sci. Appl. 11 191
[6] Luo X Q, Luo J, Hu F R and Li G Y 2023 Chin. Phys. B 32 027801
[7] Han P, Wang X K and Zhang Y 2020 Adv. Opt. Mater. 8 1900533
[8] Tzydynzhapov G, Gusikhin P, Muravev V, Dremin A, Nefyodov Y and Kukushkin I 2020 J. Infrared. Millim. Te. 41 632
[9] Bharadwaj A N, Kashyap A M, Jayachandran R and Kishore R 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC), February 10-11, 2023, Mysore, India, p. 1
[10] Liu X D, Huang J L, Chen H, Qian Z F, Ma JW, Sun X K, Fan S T and Sun Y W 2022 Photonics Res. 10 1090
[11] Liu H, Chen W, Ma J, Zhang S Y, He H L, Fan Y X and Tao Z Y 2023 Opt. Express 31 16303
[12] Zhang K, Zhang L, Duan D, Fan Y X and Tao Z Y 2018 J. Lightwave Technol. 36 4401
[13] Wu C Y, Fan J X andWen G H 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), February 1, 2020, Shenzhen, China, p. 452
[14] Zhang Y F, Li P L, Chen Y and Han Y Q 2019 Optik 181 134
[15] Zhou W, Chen H M, Ji K and Zhuang Y Y 2017 Photonic Nanostruct. 23 28
[16] Li J S 2014 Optik 125 3221
[17] Fan F, Guo Z, Bai J J, Wang X H and Chang S J 2011 J. Opt. Soc. Am. B 28 697
[18] Sun J Z, Zhang L and Gao F 2016 Chin. Phys. B 25 108701
[19] Sun J Z, Zhang L and Gao F 2016 Optik 127 8096
[20] Maleki Javan A R and Granpayeh N 2008 Opt. Quantum Electron. 40 695
[21] Dmitriev V, Melo G and Castro W 2021 IEEE Trans. Magn. 57 2900209
[22] Dehghan M, Moravvej-FarshiMK, Jabbari M, Darvish G and Ghaffari- Miab M 2023 J. Opt. Soc. Am. B 40 1773
[23] Dong R Y, Sui J Y, Li Z J and Zhang H F 2024 Opt. Laser Technol. 169 110004
[24] Wu M, Fei H M, Lin H, Zhao X D, Yang Y B and Chen Z H 2021 Acta Phys. Sin. 70 028501 (in Chinese)
[25] Wu M, Fei H M, Lin H, Zhao X D, Yang Y B, Liu X, Zhang M D, Cao B Z and Chen Z H 2021 Opt. Mater. 112 110483
[26] Fei H M, Yan S, Xu Y C, Lin H, Wu M, Yang Y B, Chen Z H, Tian Y and Zhang Y M 2020 Acta Phys. Sin. 69 184214 (in Chinese)
[27] Fei H M, Zhang Q, Wu M, Lin H, Liu X, Yang Y B, Zhang M D, Guo R and Han X T 2020 Appl. Opt. 59 4416
[28] Fei H M, Yan S,Wu M, Lin H, Yang Y B, Zhang M D and Han X 2020 Opt. Commun. 477 126346
[29] Fei H M, Wu M, Lin H, Yang Y B, Liu X, Zhang M D and Cao B Z 2020 Photonic Nanostruct. 41 100829
[30] Fei H M, Wu M, Lin H, Liu X, Yang Y B, Zhang M D and Cao B Z 2019 Superlatt. Microstruct. 132 106155
[31] Fei H, Wu M, Xu T, Lin H, Yang Y, Liu X, Zhang M and Cao B 2018 J. Opt. 20 095004
[32] Sun Y W, Mei Z J, Xu X J, Xie Q X, Fan S T, Qian Z F and Liu X D 2023 APL Photonics 8 110901
[33] Tan Y J, Wang W H, Kumar A and Singh R 2022 Opt. Express 30 33035
[34] Kumar A, Gupta M, Pitchappa P, Wang N, Szriftgiser P, Ducournau G and Singh R 2022 Nat. Commun. 13 5404
[35] Webber J, Yamagami Y, Ducournau G, Szriftgiser P, Iyoda K, Fujita M, Nagatsuma T and Singh R 2021 J. Lightwave Technol. 39 7609
[36] Devi K M, Jana S and Chowdhury D R 2021 Opt. Mater. Express 11 2445
[37] Wan X, Peng C Y, Li G, Yang J H and Qi X Y 2023 Chin. Phys. B 32 114208
[38] Shen Y F, Xu X F, Sun M, Zhou W J and Chang Y J 2024 Chin. Phys. B 33 044203
[39] Wang Y, Fei H M, Lin H, Bai J, Zhang M D, Liu X, Cao B Z, Tian Y and Xiao L T 2024 Opt. Express 32 3980
[40] Bai J, Fei H M, Lin H, Wang Y, Zhang M D, Liu X, Cao B Z, Tian Y and Xiao L T 2024 Appl. Opt. 63 4940
[41] Wang X R, Han Y H, Fei H M, Lin H, Zhang M D, Liu X, Cao B Z, Yang Y B, Chen Z H and Xiao L T 2023 Opt. Express 31 13933
[42] Wang X R, Fei H M, Lin H,Wu M, Kang L J, ZhangMD, Liu X, Yang Y B and Xiao L T 2023 Chin. Phys. B 32 074205
[43] Kang L J, Fei H M, Lin H, Wu M, Wang X R, Zhang M D, Liu X, Sun F and Chen Z H 2023 Opt. Express 31 2807
[44] Wu M, Yang Y B, Fei H M, Lin H, Zhao X D, Kang L J and Xiao L T 2022 J. Lightwave Technol. 40 7610
[45] Wu M, Yang Y B, Fei H M, Lin H, Han Y H, Zhao X D and Chen Z H 2022 Opt. Express 30 6275
[46] Yang Q H, Zhang H W, Liu Y L, Wen Q Y and Zha J 2008 Chin. Phys. Lett. 25 3957
[47] David M P 1998 Microwave Engineering 4th Edn. (New York: Wiley) pp. 451-493
[48] Kee C S, Kim J E, Park H Y, Park I and Lim H 2000 Phys. Rev. B 61 15523
[49] Han Y H, Fei H M, Lin H, Zhang Y M, ZhangMD and Yang Y B 2021 Opt. Commun. 488 126847
[50] Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Commun. 8 821
[51] Deng W M, Chen X D, Chen W J, Zhao F L and Dong J W 2019 Nanophotonics 8 833
[52] Chen X D, Zhao F L, Chen M and Dong J W 2017 Phys. Rev. B 96 020202
[53] Ezawa M 2013 Phys. Rev. B 88 161406
[54] Tang G H, Hong Y L, Zhang R L, Fan R H, Ma Z L, Wu X Y, Qi D X, Peng R W and Wang M 2023 Phys. Rev. B 108 205411
[55] Dong JW, Chen X D, Zhu H Y,Wang Y and Zhang X 2017 Nat. Mater. 16 298
[56] Liu J W, Shi F L, He X T, Tang G J, Chen W J, Chen X D and Dong J W 2021 Adv. Phys. X 6 1905546
[1] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[2] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[3] Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
Xing-Feng Zhang(张兴凤), Li-Bin Liu(刘立斌), Yu-Qing Li(李玉卿), Dong-Tao Zhang(张东涛), Wei-Qiang Liu(刘卫强), and Ming Yue(岳明). Chin. Phys. B, 2024, 33(9): 097503.
[4] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[5] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[6] Topological slow light and rainbow trapping of surface wave in valley photonic crystal bounded by air
Shuheng Chen(陈书恒), Yi Qi(齐奕), Yucen Li(李昱岑), Qihao Wang(王琪皓), and Yuanjiang Xiang(项元江). Chin. Phys. B, 2024, 33(11): 118701.
[7] High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal
Xiaorong Wang(王晓蓉), Hongming Fei(费宏明), Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康丽娟), Mingda Zhang(张明达), Xin Liu(刘欣), Yibiao Yang(杨毅彪), and Liantuan Xiao(肖连团). Chin. Phys. B, 2023, 32(7): 074205.
[8] Experimental research based on a C-band compact transit-time oscillator with a novel diode loading an embedded soft magnetic material and shielding structure
Yufang He(何宇放), Juntao He(贺军涛), Junpu Ling(令钧溥), Lei Wang(王蕾), and Lili Song(宋莉莉). Chin. Phys. B, 2023, 32(7): 075201.
[9] Spin reorientation in easy-plane kagome ferromagnet Li9Cr3(P2O7)3(PO4)2
Yuanhao Dong(董元浩), Ying Fu(付盈), Yixuan Liu(刘以轩), Zhanyang Hao(郝占阳), Le Wang(王乐), Cai Liu(刘才), Ke Deng(邓可), and Jiawei Mei(梅佳伟). Chin. Phys. B, 2023, 32(5): 057506.
[10] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[11] Topological resonators based on hexagonal-star valley photonic crystals
Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114208.
[12] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[13] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[14] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[15] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
No Suggested Reading articles found!