Tunable working bandwidth terahertz switch based on magnetic valley photonic crystal
Mingxia Hou(侯铭霞)1,3, Hongming Fei(费宏明)1,2,3,†, Han Lin(林瀚)4, and Mingda Zhang(张明达)1,3
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China; 2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China; 3 Shanxi Key Laboratory of Precision Measurement Physics, Taiyuan University of Technology, Taiyuan 030024, China; 4 Centre for Atomaterials and Nanomanufacturing, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
Abstract Terahertz (THz) switches are essential components of THz communication systems. THz switches based on conventional waveguides and photonic crystal structures are sensitive to manufacturing defects and sharp bending, resulting in high scattering losses. In addition, THz switches with tunable working bandwidths have not yet been demonstrated. Here, we design THz switches based on a topological valley photonic crystal (VPC) structure using magnetic materials, which can achieve high forward transmittance based on the unique spin-valley locking effect. The broad working bandwidth allows selective turning on and off at a designed wavelength region by controlling the applied magnetic field. The designed THz switch can achieve an extinction ratio of up to 31.66 dB with an insertion loss of less than 0.13 dB. The 3-dB bandwidth is up to 49 GHz. This tunable THz switch can be experimentally fabricated by current fabrication techniques and thus can find broad applications in THz communication systems.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404201), Australia Research Council (Grant Nos. DP220100603 and FT220100559), the National Natural Science Foundation of China (Grant No. U23A20375), the Natural Science Foundation of Shanxi Province (Grant No. 202403021211011), Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2024-032), Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (Grant No. 20240006), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF202402), Basic Scientific Research Conditions and Major Scientific Instrument and Equipment Development of Anhui Science and Technology Department (Grant No. 2023YFF0715700), Key Research Project of Shanxi Province (Grant No. 202302150101001), and Linkage Project Scheme (Grant Nos. LP210200345 and LP210100467).
Mingxia Hou(侯铭霞), Hongming Fei(费宏明), Han Lin(林瀚), and Mingda Zhang(张明达) Tunable working bandwidth terahertz switch based on magnetic valley photonic crystal 2025 Chin. Phys. B 34 058702
[1] Sheikh F, Zantah Y, Mabrouk I B, Alissa M, Barowski J, Rolfes I and Kaiser T 2021 IEEE Trans. Antennas Propag. 69 7820 [2] Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B L, Fujita M, Nagatsuma T and Singh R 2020 Nat. Photonics 14 446 [3] Rappaport T S, Xing Y C, Kanhere O, Ju S H, Madanayake A, Mandal S, Alkhateeb A and Trichopoulos G C 2019 IEEE Access 7 78729 [4] Nagatsuma T, Ducournau G and Renaud C C 2016 Nat. Photonics 10 371 [5] LiWL, Hu X M,Wu J B, Fan K B, Chen BW, Zhang C H, HuW, Cao X, Jin B B, Lu Y Q, Chen J and Wu P H 2022 Light-Sci. Appl. 11 191 [6] Luo X Q, Luo J, Hu F R and Li G Y 2023 Chin. Phys. B 32 027801 [7] Han P, Wang X K and Zhang Y 2020 Adv. Opt. Mater. 8 1900533 [8] Tzydynzhapov G, Gusikhin P, Muravev V, Dremin A, Nefyodov Y and Kukushkin I 2020 J. Infrared. Millim. Te. 41 632 [9] Bharadwaj A N, Kashyap A M, Jayachandran R and Kishore R 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC), February 10-11, 2023, Mysore, India, p. 1 [10] Liu X D, Huang J L, Chen H, Qian Z F, Ma JW, Sun X K, Fan S T and Sun Y W 2022 Photonics Res. 10 1090 [11] Liu H, Chen W, Ma J, Zhang S Y, He H L, Fan Y X and Tao Z Y 2023 Opt. Express 31 16303 [12] Zhang K, Zhang L, Duan D, Fan Y X and Tao Z Y 2018 J. Lightwave Technol. 36 4401 [13] Wu C Y, Fan J X andWen G H 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), February 1, 2020, Shenzhen, China, p. 452 [14] Zhang Y F, Li P L, Chen Y and Han Y Q 2019 Optik 181 134 [15] Zhou W, Chen H M, Ji K and Zhuang Y Y 2017 Photonic Nanostruct. 23 28 [16] Li J S 2014 Optik 125 3221 [17] Fan F, Guo Z, Bai J J, Wang X H and Chang S J 2011 J. Opt. Soc. Am. B 28 697 [18] Sun J Z, Zhang L and Gao F 2016 Chin. Phys. B 25 108701 [19] Sun J Z, Zhang L and Gao F 2016 Optik 127 8096 [20] Maleki Javan A R and Granpayeh N 2008 Opt. Quantum Electron. 40 695 [21] Dmitriev V, Melo G and Castro W 2021 IEEE Trans. Magn. 57 2900209 [22] Dehghan M, Moravvej-FarshiMK, Jabbari M, Darvish G and Ghaffari- Miab M 2023 J. Opt. Soc. Am. B 40 1773 [23] Dong R Y, Sui J Y, Li Z J and Zhang H F 2024 Opt. Laser Technol. 169 110004 [24] Wu M, Fei H M, Lin H, Zhao X D, Yang Y B and Chen Z H 2021 Acta Phys. Sin. 70 028501 (in Chinese) [25] Wu M, Fei H M, Lin H, Zhao X D, Yang Y B, Liu X, Zhang M D, Cao B Z and Chen Z H 2021 Opt. Mater. 112 110483 [26] Fei H M, Yan S, Xu Y C, Lin H, Wu M, Yang Y B, Chen Z H, Tian Y and Zhang Y M 2020 Acta Phys. Sin. 69 184214 (in Chinese) [27] Fei H M, Zhang Q, Wu M, Lin H, Liu X, Yang Y B, Zhang M D, Guo R and Han X T 2020 Appl. Opt. 59 4416 [28] Fei H M, Yan S,Wu M, Lin H, Yang Y B, Zhang M D and Han X 2020 Opt. Commun. 477 126346 [29] Fei H M, Wu M, Lin H, Yang Y B, Liu X, Zhang M D and Cao B Z 2020 Photonic Nanostruct. 41 100829 [30] Fei H M, Wu M, Lin H, Liu X, Yang Y B, Zhang M D and Cao B Z 2019 Superlatt. Microstruct. 132 106155 [31] Fei H, Wu M, Xu T, Lin H, Yang Y, Liu X, Zhang M and Cao B 2018 J. Opt. 20 095004 [32] Sun Y W, Mei Z J, Xu X J, Xie Q X, Fan S T, Qian Z F and Liu X D 2023 APL Photonics 8 110901 [33] Tan Y J, Wang W H, Kumar A and Singh R 2022 Opt. Express 30 33035 [34] Kumar A, Gupta M, Pitchappa P, Wang N, Szriftgiser P, Ducournau G and Singh R 2022 Nat. Commun. 13 5404 [35] Webber J, Yamagami Y, Ducournau G, Szriftgiser P, Iyoda K, Fujita M, Nagatsuma T and Singh R 2021 J. Lightwave Technol. 39 7609 [36] Devi K M, Jana S and Chowdhury D R 2021 Opt. Mater. Express 11 2445 [37] Wan X, Peng C Y, Li G, Yang J H and Qi X Y 2023 Chin. Phys. B 32 114208 [38] Shen Y F, Xu X F, Sun M, Zhou W J and Chang Y J 2024 Chin. Phys. B 33 044203 [39] Wang Y, Fei H M, Lin H, Bai J, Zhang M D, Liu X, Cao B Z, Tian Y and Xiao L T 2024 Opt. Express 32 3980 [40] Bai J, Fei H M, Lin H, Wang Y, Zhang M D, Liu X, Cao B Z, Tian Y and Xiao L T 2024 Appl. Opt. 63 4940 [41] Wang X R, Han Y H, Fei H M, Lin H, Zhang M D, Liu X, Cao B Z, Yang Y B, Chen Z H and Xiao L T 2023 Opt. Express 31 13933 [42] Wang X R, Fei H M, Lin H,Wu M, Kang L J, ZhangMD, Liu X, Yang Y B and Xiao L T 2023 Chin. Phys. B 32 074205 [43] Kang L J, Fei H M, Lin H, Wu M, Wang X R, Zhang M D, Liu X, Sun F and Chen Z H 2023 Opt. Express 31 2807 [44] Wu M, Yang Y B, Fei H M, Lin H, Zhao X D, Kang L J and Xiao L T 2022 J. Lightwave Technol. 40 7610 [45] Wu M, Yang Y B, Fei H M, Lin H, Han Y H, Zhao X D and Chen Z H 2022 Opt. Express 30 6275 [46] Yang Q H, Zhang H W, Liu Y L, Wen Q Y and Zha J 2008 Chin. Phys. Lett. 25 3957 [47] David M P 1998 Microwave Engineering 4th Edn. (New York: Wiley) pp. 451-493 [48] Kee C S, Kim J E, Park H Y, Park I and Lim H 2000 Phys. Rev. B 61 15523 [49] Han Y H, Fei H M, Lin H, Zhang Y M, ZhangMD and Yang Y B 2021 Opt. Commun. 488 126847 [50] Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Commun. 8 821 [51] Deng W M, Chen X D, Chen W J, Zhao F L and Dong J W 2019 Nanophotonics 8 833 [52] Chen X D, Zhao F L, Chen M and Dong J W 2017 Phys. Rev. B 96 020202 [53] Ezawa M 2013 Phys. Rev. B 88 161406 [54] Tang G H, Hong Y L, Zhang R L, Fan R H, Ma Z L, Wu X Y, Qi D X, Peng R W and Wang M 2023 Phys. Rev. B 108 205411 [55] Dong JW, Chen X D, Zhu H Y,Wang Y and Zhang X 2017 Nat. Mater. 16 298 [56] Liu J W, Shi F L, He X T, Tang G J, Chen W J, Chen X D and Dong J W 2021 Adv. Phys. X 6 1905546
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.