|
|
Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock |
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业) |
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China |
|
|
Abstract We accurately evaluate the blackbody-radiation shift in a 171Yb optical lattice clock by utilizing temperature measurement and numerical simulation. In this work. three main radiation sources are considered for the blackbody-radiation shift, including the heated atomic oven, the warm vacuum chamber, and the room-temperature vacuum windows. The temperatures on the outer surface of the vacuum chamber are measured during the clock operation period by utilizing seven calibrated temperature sensors. Then we infer the temperature distribution inside the vacuum chamber by numerical simulation according to the measured temperatures. Furthermore, we simulate the temperature variation around the cold atoms while the environmental temperature is fluctuating. Finally, we obtain that the total blackbody-radiation shift is -1.289(7) Hz with an uncertainty of 1.25×10-17 for our 171Yb optical lattice clock. The presented method is quite suitable for accurately evaluating the blackbody-radiation shift of the optical lattice clock in the case of lacking the sensors inside the vacuum chamber.
|
Received: 03 May 2016
Revised: 01 August 2016
Accepted manuscript online:
|
PACS:
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
44.40.+a
|
(Thermal radiation)
|
|
47.11.Fg
|
(Finite element methods)
|
|
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant No. 2012CB821302), the National Natural Science Foundation of China (Grant No. 11134003), the National High Technology Research and Development Program of China (Grant No. 2014AA123401), and the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400). |
Corresponding Authors:
Xin-Ye Xu
E-mail: xyxu@phy.ecnu.edu.cn
|
Cite this article:
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业) Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock 2016 Chin. Phys. B 25 103202
|
[1] |
Swallows M, Martin M, Bishof M, Benko C, Lin Y, Blatt S, Rey A M and Ye J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 416
|
[2] |
Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U and Lisdat C 2014 New J. Phys. 16 073023
|
[3] |
Zheng H J, Quan W, Liu X, Chen Y and Lu J X 2014 Chin. Phys. Lett. 31 103203
|
[4] |
Liu H, Yang Y N, He Y H, Li H X, Chen Y H, She L and Li J M 2014 Chin. Phys. Lett. 31 063201
|
[5] |
Degenhardt C, Stoehr H, Lisdat C, Wilpers G, Schnatz H, Lipphardt B, Nazarova T, Pottie P-E, Sterr U, Helmcke J and Riehle F 2005 Phys. Rev. A 72 062111
|
[6] |
Ruan J, Wang Y B, Chang H, Jiang H F, Liu T, Dong R F and Zhang S G 2015 Acta Phys. Sin. 64 160308
|
[7] |
Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
|
[8] |
Farley J W and Wing W H 1981 Phys. Rev. A 23 2397
|
[9] |
Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502
|
[10] |
Angstmann E J, Dzuba V A and Flambaum V V 2006 Phys. Rev. A 74 023405
|
[11] |
Campbell G K, Ludlow A D, Blatt S, Thomsen J W, Martin M J, de Miranda M H G, Zelevinsky T, Boyd M M, Ye J, Diddams S A, Heavner T P, Parker T E and Jefferts S R 2008 Metrologia 45 539
|
[12] |
Falke S, Schnatz H, Vellore Winfred J S R, Middelmann Th, Vogt St, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U and Lisdat Ch 2011 Metrologia 48 399
|
[13] |
Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
|
[14] |
Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W and Ludlow A D 2014 Phys. Rev. Lett. 113 260801
|
[15] |
Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185
|
[16] |
Park C Y, Yu D H, Lee W K, Park S E, Kim E B, Lee S K, Cho J W, Yoon T H, Mun J, Park S J, Kwon T Y and Lee S B 2013 Metrologia 50 119
|
[17] |
Jiang D, Arora B, Safronova M S and Clark C W 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154020
|
[18] |
Safronova M S, Jiang D and Safronova U I 2010 Phys. Rev. A 82 022510
|
[19] |
Meng F, Li T C, Li Ye, et al. 2015 Chin. Phys. Lett. 32 090601
|
[20] |
Safronova M S, Porsev S G, Safronova U I, Kozlov M G and Clark C W 2013 Phys. Rev. A 87 012509
|
[21] |
Angstmann E J, Dzuba V A and Flambaum V V 2006 Phys. Rev. Lett. 97 040802
|
[22] |
Beloy K, Sherman J A, Lemke N D, Hinkley N, Oates C W and Ludlow A D 2012 Phys. Rev. A 86 051404
|
[23] |
Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D and Oates C W 2012 Phys. Rev. Lett. 108 153002
|
[24] |
Zhang X, Zhou M, Chen N, Gao Q, Han C, Yao Y, Xu P, Li S, Xu Y, Jiang Y, Bi Z, Ma L and Xu X 2015 Laser Phys. Lett. 12 025501
|
[25] |
Middelmann T, Lisdat C, Falke S, Vellore Winfred Joseph S R, Riehle F and Sterr U 2011 IEEE Trans. Instrum. Meas. 60 2550
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|