Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 103202    DOI: 10.1088/1674-1056/25/10/103202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock

Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业)
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  

We accurately evaluate the blackbody-radiation shift in a 171Yb optical lattice clock by utilizing temperature measurement and numerical simulation. In this work. three main radiation sources are considered for the blackbody-radiation shift, including the heated atomic oven, the warm vacuum chamber, and the room-temperature vacuum windows. The temperatures on the outer surface of the vacuum chamber are measured during the clock operation period by utilizing seven calibrated temperature sensors. Then we infer the temperature distribution inside the vacuum chamber by numerical simulation according to the measured temperatures. Furthermore, we simulate the temperature variation around the cold atoms while the environmental temperature is fluctuating. Finally, we obtain that the total blackbody-radiation shift is -1.289(7) Hz with an uncertainty of 1.25×10-17 for our 171Yb optical lattice clock. The presented method is quite suitable for accurately evaluating the blackbody-radiation shift of the optical lattice clock in the case of lacking the sensors inside the vacuum chamber.

Keywords:  optical lattices      blackbody radiation shift      temperature measurement      finite element analysis  
Received:  03 May 2016      Revised:  01 August 2016      Accepted manuscript online: 
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  37.10.Jk (Atoms in optical lattices)  
  44.40.+a (Thermal radiation)  
  47.11.Fg (Finite element methods)  
Fund: 

Project supported by the National Key Basic Research and Development Program of China (Grant No. 2012CB821302), the National Natural Science Foundation of China (Grant No. 11134003), the National High Technology Research and Development Program of China (Grant No. 2014AA123401), and the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400).

Corresponding Authors:  Xin-Ye Xu     E-mail:  xyxu@phy.ecnu.edu.cn

Cite this article: 

Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业) Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock 2016 Chin. Phys. B 25 103202

[1] Swallows M, Martin M, Bishof M, Benko C, Lin Y, Blatt S, Rey A M and Ye J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 416
[2] Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U and Lisdat C 2014 New J. Phys. 16 073023
[3] Zheng H J, Quan W, Liu X, Chen Y and Lu J X 2014 Chin. Phys. Lett. 31 103203
[4] Liu H, Yang Y N, He Y H, Li H X, Chen Y H, She L and Li J M 2014 Chin. Phys. Lett. 31 063201
[5] Degenhardt C, Stoehr H, Lisdat C, Wilpers G, Schnatz H, Lipphardt B, Nazarova T, Pottie P-E, Sterr U, Helmcke J and Riehle F 2005 Phys. Rev. A 72 062111
[6] Ruan J, Wang Y B, Chang H, Jiang H F, Liu T, Dong R F and Zhang S G 2015 Acta Phys. Sin. 64 160308
[7] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[8] Farley J W and Wing W H 1981 Phys. Rev. A 23 2397
[9] Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502
[10] Angstmann E J, Dzuba V A and Flambaum V V 2006 Phys. Rev. A 74 023405
[11] Campbell G K, Ludlow A D, Blatt S, Thomsen J W, Martin M J, de Miranda M H G, Zelevinsky T, Boyd M M, Ye J, Diddams S A, Heavner T P, Parker T E and Jefferts S R 2008 Metrologia 45 539
[12] Falke S, Schnatz H, Vellore Winfred J S R, Middelmann Th, Vogt St, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U and Lisdat Ch 2011 Metrologia 48 399
[13] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[14] Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W and Ludlow A D 2014 Phys. Rev. Lett. 113 260801
[15] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185
[16] Park C Y, Yu D H, Lee W K, Park S E, Kim E B, Lee S K, Cho J W, Yoon T H, Mun J, Park S J, Kwon T Y and Lee S B 2013 Metrologia 50 119
[17] Jiang D, Arora B, Safronova M S and Clark C W 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154020
[18] Safronova M S, Jiang D and Safronova U I 2010 Phys. Rev. A 82 022510
[19] Meng F, Li T C, Li Ye, et al. 2015 Chin. Phys. Lett. 32 090601
[20] Safronova M S, Porsev S G, Safronova U I, Kozlov M G and Clark C W 2013 Phys. Rev. A 87 012509
[21] Angstmann E J, Dzuba V A and Flambaum V V 2006 Phys. Rev. Lett. 97 040802
[22] Beloy K, Sherman J A, Lemke N D, Hinkley N, Oates C W and Ludlow A D 2012 Phys. Rev. A 86 051404
[23] Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D and Oates C W 2012 Phys. Rev. Lett. 108 153002
[24] Zhang X, Zhou M, Chen N, Gao Q, Han C, Yao Y, Xu P, Li S, Xu Y, Jiang Y, Bi Z, Ma L and Xu X 2015 Laser Phys. Lett. 12 025501
[25] Middelmann T, Lisdat C, Falke S, Vellore Winfred Joseph S R, Riehle F and Sterr U 2011 IEEE Trans. Instrum. Meas. 60 2550
[1] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts
Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟). Chin. Phys. B, 2022, 31(4): 040706.
[3] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[4] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[5] Calculations of atomic polarizability for beryllium using MCDHF method
Hui Dong(董辉), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), and Gediminas Gaigalas. Chin. Phys. B, 2021, 30(4): 043103.
[6] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[7] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[8] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[9] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[10] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[11] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
[12] Bifurcated overtones of one-way localized Fabry–Pérot resonances in parity-time symmetric optical lattices
Fatma Nafaa Gaafer, Yaxi Shen(沈亚西), Yugui Peng(彭玉桂), Aimin Wu(武爱民), Peng Zhang(张鹏), Xuefeng Zhu(祝雪丰). Chin. Phys. B, 2017, 26(7): 074218.
[13] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[14] Finite element analysis of ionic liquid gel soft actuator
Bin He(何斌), Cheng-Hong Zhang(张成红), An Ding(丁安). Chin. Phys. B, 2017, 26(12): 126102.
[15] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
No Suggested Reading articles found!