Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 126102    DOI: 10.1088/1674-1056/26/12/126102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Finite element analysis of ionic liquid gel soft actuator

Bin He(何斌), Cheng-Hong Zhang(张成红), An Ding(丁安)
College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
Abstract  

A new type of soft actuator material-ionic liquid gel (ILG), which consists of HEMA, BMIMBF4, and TiO2, can be transformed into gel state under the irradiation of ultraviolet (UV) light. In this paper, Mooney-Rivlin hyperelastic model of finite element method is proposed for the first time to study the properties of the ILG. It has been proved that the content of TiO2 has a great influence on the properties of the gel, and Young's modulus of the gel increases with the increase of its content, despite of reduced tensile deformation. The results in this work show that when the TiO2 content is 1.0 wt%, a large tensile deformation and a strong Young's modulus can be obtained to be 325% and 7.8 kPa, respectively. The material parameters of ILG with TiO2 content values of 0.2 wt%, 0.5 wt%, 1.0 wt%, and 1.5 wt% are obtained, respectively, through uniaxial tensile tests, including C10, C01, C20, C11, C02, C30, C21, C12, and C03 elements. In this paper, the large-scaled general finite element software ANSYS is used to simulate and analyze the ILG, which is based on SOLID186 element and nonlinear hyperelastic Mooney-Rivlin model. The finite element simulation analysis based stress-strain curves are almost consistent with the experimental stress-strain curves, and hence the finite element analysis of ILG is feasible and credible. This work presents a new direction for studying the performance of soft actuator for the ILG, and also contributes to the design of soft robot actuator.

Keywords:  ionic liquid gel (ILG)      soft actuator      Mooney-Rivlin model      finite element analysis  
Received:  08 June 2017      Revised:  08 September 2017      Accepted manuscript online: 
PACS:  61.41.+e (Polymers, elastomers, and plastics)  
  47.11.Fg (Finite element methods)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51538009 and 51605334) and the Natural Science Foundation of Shanghai Municipality, China (Grant No. 08002360285).

Corresponding Authors:  Bin He     E-mail:  hebin@tongji.edu.cn

Cite this article: 

Bin He(何斌), Cheng-Hong Zhang(张成红), An Ding(丁安) Finite element analysis of ionic liquid gel soft actuator 2017 Chin. Phys. B 26 126102

[1] Pelrine R, Kornbluh R, Pei Q B and Joseph J 2000 Science 287 836
[2] Hammock M L, Chortos A, Tee B C K, Tok J B H and Bao Z A 201325 th Anniversary Adv. Mater. 25 5997
[3] Feinberg A W, Feigel A, Shevkoplyas S S, Sheehy S, Whitesides G M and Parker K K 2007 Science 317 1366
[4] Gu W, Wei J and Yu Y L 2016 Chin. Phys. B 25 096103
[5] Buchtova' N, Guyomard-Lack A and Le Bideau J 2014 Green Chem. 16 1149
[6] Le Bideau, J, Viau L and Vioux A 2011 Chem. Soc. Rev. 40 907
[7] Zhang W, Chen L Z, Zhang J M and Huang Z G 2017 Chin. Phys. B 26 048801
[8] Zhang M M, Xu D H, Yan X Z, Chen J Z, Dong S Y, Zheng B and Huang F H 2012 Angew. Chem. Int. Ed. 51 7011
[9] Zhang D, Yang J H, Bao S, Wu Q S and Wang Q G 2013 Sci. Rep. 3 1399
[10] Zhang J H, Mao X L, Liu Q Q, Gu F, Li M, et al. 2012 Chin. Phys. B 21 8 086101
[11] Leski A, Baraniecki R and Malachowski J 2002 Proceedings of the 7th International Design Conference, Dubrovnik
[12] Ren J L and Jiang T 2016 Chin. Phys. B 25 020204
[13] Alexandrov S and Miszuris W 2016 Acta Mechanica 227 813
[14] Sonato M, Piccolroaz A, Miszuris W and Mishuris G 2015 J. Solids Struct. 64-659
[15] Li Z C, Jia X P, Huang G F, Hu M H and Li Y 2013 Chin. Phys. B 22 014701
[16] Liu X H, He B, Wang Z P, Tang H F, Su T and Wang Q G 2014 Sci. Rep. 4 6673
[17] Yeoh O H 1993 Rubber Chem. Technol. 66 754
[18] Zhang Y N 2013 Chin. Phys. B 22 014214
[19] Sangpradit K, Liu H B and Dasgupta P 2011 IEEE Transaction on Biomedical Engineering 58 3319
[20] Zhang H 2016 Appl. Math. Mech. Engl. Ed. 37 1539
[21] Facchinetti M and Miszuris W 2016 J. Eur. Ceram. Soc. 36 2295
[22] Hua D Y, Song B, Wang D F and Chen Z Y 2016 Composite Structures 149 385
[23] Yang H B, Li Y, Zhao H G, Wen J H and Wen X S 2014 Chin. Phys. B 23 104304
[24] Liu Q, Li S G, Wang X Y and Shi M 2016 Chin. Phys. B 25 124210
[25] Sun W, Chaikof E L and Levenston M E 2008 Journal of Biomechani-cal Engineering 130 061003
[26] Ihueze C and Mgbemena C 2014 Journal of Scientific Research & Reports 32528
[27] Yu Y Y, Li X Y, Sun B and He K P 2015 Chin. Phys. B 24 068702
[1] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[2] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[3] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[4] Three-axis magnetic flux leakage in-line inspection simulation based on finite-element analysis
Feng Jian (冯健), Zhang Jun-Feng (张峻峰), Lu Sen-Xiang (卢森骧), Wang Hong-Yang (王宏阳), Ma Rui-Ze (马瑞泽). Chin. Phys. B, 2013, 22(1): 018103.
[5] Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation
Ren Huai-Hui(任淮辉), Wang Xi-Shu(王习术), Chen Ying-Long(陈应龙), and Li Xu-Dong(李旭东) . Chin. Phys. B, 2012, 21(3): 034501.
[6] A novel anti-shock silicon etching apparatus for solving diaphragm release problems
Shi Sha-Li(石莎莉), Chen Da-Peng(陈大鹏), Ou Yi(欧毅), Jing Yu-Peng(景玉鹏), Xu Qiu-Xia(徐秋霞), and Ye Tian-Chun(叶甜春). Chin. Phys. B, 2010, 19(6): 060701.
No Suggested Reading articles found!