Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 035101    DOI: 10.1088/1674-1056/27/3/035101
Special Issue: TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials
TOPICAL REVIEW—Thermal and thermoelectric properties of nano materials Prev   Next  

Thermal conductivity of nanowires

Zhongwei Zhang(张忠卫)1,2,3, Jie Chen(陈杰)1,2,3
1 Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering and Institute for Advanced Study, Tongji University, Shanghai 200092, China;
2 China-EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
3 Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  Thermal conductivity of nanowires (NWs) is a crucial criterion to assess the operating performance of NWs-based device applications, such as in the field of heat dissipation, thermal management, and thermoelectrics. Therefore, numerous research interests have been focused on controlling and manipulating thermal conductivity of one-dimensional materials in the past decade. In this review, we summarize the state-of-the-art research status on thermal conductivity of NWs from both experimental and theoretical studies. Various NWs are included, such as Si, Ge, Bi, Ti, Cu, Ag, Bi2Te3, ZnO, AgTe, and their hybrids. First, several important size effects on thermal conductivity of NWs are discussed, such as the length, diameter, orientation, and cross-section. Then, we introduce diverse nanostructuring pathways to control the phonons and thermal transport in NWs, such as alloy, superlattices, core-shell structure, porous structure, resonant structure, and kinked structure. Distinct thermal transport behaviors and the associated underlying physical mechanisms are presented. Finally, we outline the important potential applications of NWs in the fields of thermoelectrics and thermal management, and provide an outlook.
Keywords:  thermal conductivity      nanowires      thermal management      thermoelectrics  
Received:  12 October 2017      Revised:  29 November 2017      Accepted manuscript online: 
PACS:  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
  81.07.Gf (Nanowires)  
  44.10.+i (Heat conduction)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0406000), the National Natural Science Foundation of China (Grant Nos. 51506153 and 11334007), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 17ZR1448000), and the National Youth 1000 Talents Program in China and the Startup Grant at Tongji University, China.
Corresponding Authors:  Jie Chen     E-mail:  jie@tongji.edu.cn

Cite this article: 

Zhongwei Zhang(张忠卫), Jie Chen(陈杰) Thermal conductivity of nanowires 2018 Chin. Phys. B 27 035101

[1] Wang Z L 2013 Nanowires and Nanobelts:Materials, Properties and Devices (Place:Springer Science & Business Media) Volume 1
[2] Yogeswaran U and Chen S M 2008 Sensors 8 290
[3] Rojo M M, Calero O C, Lopeandia A F, Rodriguez-Viejo J and Martin-Gonzalez M 2013 Nanoscale 5 11526
[4] Rodrigues V, Fuhrer T and Ugarte D 2000 Phys. Rev. Lett. 85 4124
[5] Thelander C, Agarwal P, Brongersma S, Eymery J, Feiner L F, Forchel A, Scheffler M, Riess W, Ohlsson B J, Gösele U and Samuelson L 2006 Mater. Today 9 28
[6] Yang P, Yan R and Fardy M 2010 Nano Lett. 10 1529
[7] Zhang G and Zhang Y W 2013 Phys. Status Solidi-R 7 754
[8] Park H S, Gall K and Zimmerman J A 2005 Phys. Rev. Lett. 95 255504
[9] Chen R, Lu M C, Srinivasan V, Wang Z, Cho H H and Majumdar A 2009 Nano Lett. 9 548
[10] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[11] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843
[12] Wang L and Li B 2007 Phys. Rev. Lett. 99 177208
[13] Wang L and Li B 2008 Phys. Rev. Lett. 101 267203
[14] Chen J, Walther J H and Koumoutsakos P 2014 Nano Lett. 14 819
[15] Zhang Z, Xie Y, Peng Q and Chen Y 2015 Nanotechnology 26 375402
[16] Chen J, Walther J H and Koumoutsakos P 2015 Adv. Funct. Mater. 25 7539
[17] Alexeev D, Chen J, Walther J H, Giapis K P, Angelikopoulos P and Koumoutsakos P 2015 Nano Lett. 15 5744
[18] Liu X, Zhang G and Zhang Y W 2015 Carbon 94 760
[19] Zhan H, Zhang G, Zhang Y, Tan V B C, Bell J M and Gu Y 2016 Carbon 98 232
[20] Liu X, Zhang G and Zhang Y W 2016 Nano Lett. 16 4954
[21] Chen J, Walther J H and Koumoutsakos P 2016 Nanotechnology 27 465705
[22] Xu X, Chen J and Li B 2016 J. Phys. -Condens. Matter 28 483001
[23] Zhang Z, Hu S, Chen J and Li B 2017 Nanotechnology 28 225704
[24] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 163
[25] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard Iii W A and Heath J R 2008 Nature 451 168
[26] Wan C, Wang Y, Wang N, Norimatsu W, Kusunoki M and Koumoto K 2010 Sci. Technol. Adv. Mater. 11 044306
[27] Kurosaki K, Yusufu A, Miyazaki Y, Ohishi Y, Muta H and Yamanaka S 2016 Mater. Trans. 57 1018
[28] Kim J, Kim G, Bahk J H, Noh J S and Lee W 2017 Nano Energy 32 520
[29] Zhang T, Wu S, Xu J, Zheng R and Cheng G 2015 Nano Energy 13 433
[30] Ramayya E B, Maurer L N, Davoody A H and Knezevic I 2012 Phys. Rev. B 86 115328
[31] Volklein F, Reith H, Cornelius T W, Rauber M and Neumann R 2009 Nanotechnology 20 325706
[32] Yu P, Wu J, Liu S, Xiong J, Jagadish C and Wang Z M 2016 Nano Today 11 704
[33] Li W and Mingo N 2013 J. Appl. Phys. 114 054307
[34] Chen Y, Li D, Yang J, Wu Y, Lukes J R and Majumdar A 2004 Phys. B-Condens. Matter 349 270
[35] Hu M and Poulikakos D 2012 Nano Lett. 12 5487
[36] Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 104508
[37] Wingert M C, Chen Z C, Dechaumphai E, Moon J, Kim J H, Xiang J and Chen R 2011 Nano Lett. 11 5507
[38] Weisse J M, Marconnet A M, Kim D R, Rao P M, Panzer M A, Goodson K E and Zheng X 2012 Nanoscale Res. Lett. 7 554
[39] Jung S M, Preston D J, Jung H Y, Deng Z, Wang E N and Kong J 2016 Adv. Mater. 28 1413
[40] Xiong S, Saaskilahti K, Kosevich Y A, Han H, Donadio D and Volz S 2016 Phys. Rev. Lett. 117 025503
[41] Jiang J W, Yang N, Wang B S and Rabczuk T 2013 Nano Lett. 13 1670
[42] Zhang Z, Xie Y, Peng Q and Chen Y 2016 Nanotechnology 27 445703
[43] Zou J and Balandin A 2001 J. Appl. Phys. 89 2932
[44] Volz S G and Chen G 1999 Appl. Phys. Lett. 75 2056
[45] Li D, Wu Y, Kim P, Shi L, Yang P and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[46] Wang S C, Liang X G, Xu X H and Ohara T 2009 J. Appl. Phys. 105 014316
[47] Cuffe J, Eliason J K, Maznev A A, Collins K C, Johnson J A, Shchepetov A, Prunnila M, Ahopelto J, Sotomayor Torres C M, Chen G and Nelson K A 2015 Phys. Rev. B 91 245423
[48] Yang N, Zhang G and Li B 2010 Nano Today 5 85
[49] Raja S N, Rhyner R, Vuttivorakulchai K, Luisier M and Poulikakos D 2017 Nano Lett. 17 276
[50] Xie G, Guo Y, Li B, Yang L, Zhang K, Tang M and Zhang G 2013 Phys. Chem. Chem. Phys. 15 14647
[51] Zhou Y and Hu M 2016 Nano Lett. 16 6178
[52] Blanc C, Rajabpour A, Volz S, Fournier T and Bourgeois O 2013 Appl. Phys. Lett. 103 043109
[53] Hsiao T K, Chang H K, Liou S C, Chu M W, Lee S C and Chang C W 2013 Nat. Nanotechnol. 8 534
[54] Hsiao T K, Huang B W, Chang H K, Liou S C, Chu M W, Lee S C and Chang C W 2015 Phys. Rev. B 91 035406
[55] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B and Ozyilmaz B 2014 Nat. Commun. 5 3689
[56] Henry A and Chen G 2008 Phys. Rev. Lett. 101 235502
[57] Shen S, Henry A, Tong J, Zheng R and Chen G 2010 Nat. Nanotechnol. 5 251
[58] Henry A and Chen G 2009 Phys. Rev. B 79 144305
[59] Liu J and Yang R 2012 Phys. Rev. B 86 104307
[60] Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503
[61] Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A 2012 Phys. Rev. B 85 195436
[62] Martin P N, Aksamija Z, Pop E and Ravaioli U 2010 Nano Lett. 10 1120
[63] Mehta R, Chugh S and Chen Z 2015 Nano Lett. 15 2024
[64] Sadhu J and Sinha S 2011 Phys. Rev. B 84 115450
[65] Carrete J, Gallego L J, Varela L M and Mingo N 2011 Phys. Rev. B 84 075403
[66] Feser J P, Sadhu J S, Azeredo B P, Hsu K H, Ma J, Kim J, Seong M, Fang N X, Li X, Ferreira P M, Sinha S and Cahill D G 2012 J. Appl. Phys. 112 114306
[67] Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 204705
[68] He Y and Galli G 2012 Phys. Rev. Lett. 108 215901
[69] Lee J, Lee W, Lim J, Yu Y, Kong Q, Urban J J and Yang P 2016 Nano Lett. 16 4133
[70] Bui C T, Xie R, Zheng M, Zhang Q, Sow C H, Li B and Thong J T 2012 Small 8 738
[71] Roh J W, Jang S Y, Kang J, Lee S, Noh J S, Kim W, Park J and Lee W 2010 Appl. Phys. Lett. 96 103101
[72] Rojo M M, Abad B, Manzano C V, Torres P, Cartoixa X, Alvarez F X and Martin-Gonzalez M 2017 Nanoscale 9 6741
[73] Kim J, Lee S, Brovman Y M, Kim P and Lee W 2015 Nanoscale 7 5053
[74] Donadio D and Galli G 2010 Nano Lett. 10 847
[75] Ponomareva I, Srivastava D and Menon M 2007 Nano Lett. 7 1155
[76] Zhou Y, Zhang X and Hu M 2017 Nano Lett. 17 1269
[77] Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F and Marzari N 2015 Nat. Commun. 6 6400
[78] Aksamija Z and Knezevic I 2010 Phys. Rev. B 82 045319
[79] Holmes J D, Johnston K P, Doty R C and Korgel B A 2000 Science 287 1471
[80] Paul A, Luisier M and Klimeck G 2011 J. Appl. Phys. 110 114309
[81] Markussen T, Jauho A P and Brandbyge M 2008 Nano Lett. 8 3771
[82] Zhou W X, Chen K Q, Tang L M and Yao L J 2013 Phys. Lett. A 377 3144
[83] Roh J W, Hippalgaonkar K, Ham J H, Chen R, Li M Z, Ercius P, Majumdar A, Kim W and Lee W 2011 ACS Nano 5 3954
[84] Moore A L, Pettes M T, Zhou F and Shi L 2009 J. Appl. Phys. 106 034310
[85] Li S, Chaput L, Stein N, Frantz C, Lacroix D and Termentzidis K 2015 Appl. Phys. Lett. 106 233108
[86] Zhou Y, Chen Y and Hu M 2016 Sci. Rep. 6 24903
[87] Chen J, Zhang G and Li B 2010 Nano Lett. 10 3978
[88] Wingert M C, Kwon S, Hu M, Poulikakos D, Xiang J and Chen R 2015 Nano Lett. 15 2605
[89] Zhang Z, Xie Y, Peng Q and Chen Y 2016 Sci. Rep. 6 21639
[90] Xie G, Guo Y, Wei X, Zhang K, Sun L, Zhong J, Zhang G and Zhang Y W 2014 Appl. Phys. Lett. 104 233901
[91] Chen J, Zhang G and Li B 2009 Appl. Phys. Lett. 95 073117
[92] Kim H, Kim I, Choi H J and Kim W 2010 Appl. Phys. Lett. 96 233106
[93] Lin K H and Strachan A 2013 Phys. Rev. B 87 115302
[94] Yeh N C 2017 ACS Nano 11 5215
[95] Mu X, Wang L, Yang X, Zhang P, To A C and Luo T 2015 Sci. Rep. 5 16697
[96] Adachi M M, Anantram M P and Karim K S 2010 Nano Lett. 10 4093
[97] Cui L F, Ruffo R, Chan C K, Peng H and Cui Y 2008 Nano Lett. 9 491
[98] France-Lanord A, Merabia S, Albaret T, Lacroix D and Termentzidis K 2014 J. Phys. -Condens. Matter 26 355801
[99] Fukata N, Mitome M, Sekiguchi T, Bando Y, Kirkham M, Hong J I, Wang Z L and Snyder R L 2012 ACS Nano 6 8887
[100] Yang K, Cantarero A, Rubio A and D'Agosta R 2015 Nano Res. 8 2611
[101] Li D and Xia Y 2004 Adv. Mater. 16 1151
[102] Law M, Goldberger J and Yang P 2004 Annu. Rev. Mater. Res. 34 83
[103] Yang R, Chen G and Dresselhaus M S 2005 Nano Lett. 5 1111
[104] Prasher R 2006 Appl. Phys. Lett. 89 063121
[105] Hu M, Giapis K P, Goicochea J V, Zhang X and Poulikakos D 2011 Nano Lett. 11 618
[106] Hu M, Zhang X, Giapis K P and Poulikakos D 2011 Phys. Rev. B 84 085442
[107] Chen J, Zhang G and Li B 2012 Nano Lett. 12 2826
[108] Kang J, Roh J W, Shim W, Ham J, Noh J S and Lee W 2011 Adv. Mater. 23 3414
[109] Hopkins P E, Reinke C M, Su M F, Olsson R H, Shaner E A, Leseman Z C, Serrano J R, Phinney L M and El-Kady I 2011 Nano Lett. 11 107
[110] Yang L, Yang N and Li B 2014 Nano Lett. 14 1734
[111] Cartoixá X, Dettori R, Melis C, Colombo L and Rurali R 2016 Appl. Phys. Lett. 109 013107
[112] Zhao Y, Liu D, Chen J, Zhu L, Belianinov A, Ovchinnikova O S, Unocic R R, Burch M J, Kim S, Hao H, Pickard D S, Li B and Thong J T L 2017 Nat. Commun. 8 15919
[113] Takabatake T, Suekuni K, Nakayama T and Kaneshita E 2014 Rev. Mod. Phys. 86 669
[114] Hata T, Giorgi G and Yamashita K 2016 Nano Lett. 16 2749
[115] Li W and Mingo N 2015 Phys. Rev. B 91 144304
[116] Davis B L and Hussein M I 2014 Phys. Rev. Lett. 112 055505
[117] Markussen T, Jauho A P and Brandbyge M 2009 Phys. Rev. Lett. 103 055502
[118] Zhang Q, Cui Z, Wei Z, Chang S Y, Yang L, Zhao Y, Yang Y, Guan Z, Jiang Y, Fowlkes J, Yang J, Xu D, Chen Y, Xu T T and Li D 2017 Nano Lett. 17 3550
[119] Moore A L, Saha S K, Prasher R S and Shi L 2008 Appl. Phys. Lett. 93 083112
[120] Xiong S, Kosevich Y A, Sääskilahti K, Ni Y and Volz S 2014 Phys. Rev. B 90 195439
[121] Ouyang Y, Xie Y, Zhang Z, Peng Q and Chen Y 2016 J. Appl. Phys. 120 235109
[122] Markussen T 2012 Nano Lett. 12 4698
[123] Xu E Z, Li Z, Martinez J A, Sinitsyn N, Htoon H, Li N, Swartzentruber B, Hollingsworth J A, Wang J and Zhang S X 2015 Nanoscale 7 2869
[124] Viñas F, Xu H Q and Leijnse M 2017 Phys. Rev. B 95 115420
[125] Lee S, Shin H S, Song J Y and Jung M H 2017 J. Nanomater. 2017 4308968
[126] Finefrock S W, Zhang G, Bahk J H, Fang H, Yang H, Shakouri A and Wu Y 2014 Nano Lett. 14 3466
[127] Yang H, Bahk J H, Day T, Mohammed A M, Snyder G J, Shakouri A and Wu Y 2015 Nano Lett. 15 1349
[128] Zhang Z, Chen Y, Xie Y and Zhang S 2016 Appl. Therm. Eng. 102 1075
[129] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[130] Hu S, Chen J, Yang N and Li B 2017 Carbon 116 139
[131] Chen K Q, Li W X, Duan W, Shuai Z and Gu B L 2005 Phys. Rev. B 72 045422
[132] Cartoixa X, Colombo L and Rurali R 2015 Nano Lett. 15 8255
[133] Liu Y Y, Zhou W X, Tang L M and Chen K Q 2014 Appl. Phys. Lett. 105 203111
[134] Li D, Wu G S, Wang W, Wang Y D, Liu D, Zhang D C, Chen Y F, Peterson G P and Yang R 2012 Nano Lett. 12 3385
[135] Shim D I, Choi G, Lee N, Kim T, Kim B S and Cho H H 2017 ACS Appl. Mater. Inter. 9 17595
[136] Morshed A K M M, Yang F, Yakut Ali M, Khan J A and Li C 2012 Appl. Therm. Eng. 32 68
[137] Wang S, Cheng Y, Wang R, Sun J and Gao L 2014 ACS Appl. Mater. Inter. 6 6481
[138] Hsu P C, Liu X, Liu C, Xie X, Lee H R, Welch A J, Zhao T and Cui Y 2015 Nano Lett. 15 365
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[12] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[13] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[14] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[15] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
No Suggested Reading articles found!