Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 054302    DOI: 10.1088/1674-1056/adca9d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of metal plate on ultrasonic cavitation field distribution

Jin-He Liu(刘金河)1,†, Zhuang-Zhi Shen(沈壮志)2, Peng-Fei Cao(曹鹏飞)1, Jian-Feng Li(李建锋)1, and Xiao-Qiang Bai(白小强)1
1 School of New Energy, Longdong University, Qingyang 745000, China;
2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
Abstract  In order to enhance the ultrasonic degradation rate of organic solutions, a metal plate is placed at the water-air interface of the ultrasonic cleaning tank. Initially, the distribution of the acoustic field in the ultrasonic water tank was calculated using the simulation software COMSOL. The simulation results demonstrated that the utilization of the metal plate can eliminate the standing-wave acoustic field to a certain extent. Subsequently, the pixel method was selected for a quantitative comparison of the cavitation area in the flume with and without the metal plate. The results demonstrated that, under specific conditions, the area of ultrasonic cavitation in the water tank can be expanded using a metal plate. Thereafter, an acoustic degradation experiment was designed to confirm the feasibility of the simulation method. Furthermore, the impacts of the amplitude of the incident ultrasonic pressure, frequency, and the height of the liquid level in the water tank on the cavitation area were investigated.
Keywords:  ultrasonic degradation rate      metal plate      cavitation      height of the liquid level  
Received:  20 January 2025      Revised:  16 March 2025      Accepted manuscript online:  09 April 2025
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.38.+n (Transduction; acoustical devices for the generation and reproduction of sound)  
Fund: Project supported by the Doctoral Fund Program of Longdong University (Grant No. XYBYZK2219), the National Natural Science Foundation of China (Grant No. 12274277), the Science and Technology Project of Gansu Province of China (Grant No. 21JR11RM046), and Young Doctor Fund of Gansu Education Department (Grant No. 2022QB-171).
Corresponding Authors:  Jin-He Liu     E-mail:  qy1451785880@163.com

Cite this article: 

Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), Peng-Fei Cao(曹鹏飞), Jian-Feng Li(李建锋), and Xiao-Qiang Bai(白小强) Effect of metal plate on ultrasonic cavitation field distribution 2025 Chin. Phys. B 34 054302

[1] Shen Z H 2005 China Biogas 23 161 (in Chinese)
[2] Xue S 2023 Sustainable Mining and Metallurgy 39 63
[3] Kiso Y, Sugiura Y, Kitao T and Nishimura K 2001 J. Membr. Sci. 192 1
[4] Wang Y, Rao G Y and Hu J Y 2011 Water Sci. Technol.: Water Supply 11 711
[5] Alexander J T, Hai F I and Al-Aboud T M 2012 J. Environ. Manage 111 195
[6] Sala M and Gutiérrez-Bouzán M C 2012 Int. J. Photoenergy 2012 1
[7] Zhang M, Shi Q, Song X,Wang H and Bian Z 2019 Environ. Sci. Pollut. Res. 26 10457
[8] Ahmady-Asbchin S, Andres Y, Gerente C and Le Cloirec P 2009 Environ. Technol 30 755
[9] Al-Gheethi A A, Lalung J, Noman E A, Bala J and Norli I 2015 Clean Technol. Environ. Policy 17 2101
[10] Von Sonntag C 2008 Water Sci. Technol. 58 1015
[11] Vilar V J, Malato S and Dionysiou D D 2015 Environ. Sci. Pollut. Res. 22 759
[12] Kitano M and Hara M 2010 J. Mater. Chem. 20 627
[13] Xiong Z K, Zhang H, Zhang W C, Lai B and Yao G 2019 Chem. Eng. J. 359 13
[14] Radi M A, Nasirizadeh N, Rohani-Moghadam M and Dehghani M 2015 Ultrason. Sonochem. 27 609
[15] Ikehata K and Gamal El-Din M 2005 OZSE 27 173
[16] Amritha A S and Manu B 2016 Water. Sci. Technol 74 1919
[17] Wang J, Wang Z J, Vieira C L Z, Wolfson J M, Pingtian G and Huang S D 2019 Ultrason. Sonochem. 55 273
[18] Tyagi V K, Lo S L, Appels L and Dewil R 2014 Crit. Rev. Environ. Sci. Technol. 44 1220
[19] WuWH, ZhaiW, Hu H B andWei B B 2017 Acta Phys. Sin. 66 194303 (in Chinese)
[20] Ren J L, Zhang M D, Niu Y and Lin C P 2003 Piezoelect. Acoustoopt. 25 347
[21] Wei Z S and Weavers L K 2016 Ultrason. Sonochem. 31 490
[22] Zhang Z B, Gao T T, Liu X Y, Li D W, Zhao J W, Lei Y Q and Wang Y K 2018 Ultrason. Sonochem. 42 787
[23] Rashwan S S, Dincer I and Mohany A 2020 Ultrason. Sonochem. 68 105174
[24] Liu J H, Shen, Z Z, and Lin S Y 2021 Chin. Phys. B 30 104302
[25] Zhai W, Liu H M, Hong Z Y, Xie W J and Wei B 2017 Ultrason. Sonochem. 34 130
[26] Tiong T J, Price G J and Kanagasingam S 2014 Ultrason. Sonochem. 21 1858
[27] Marmottant P, Versluis M, de Jong N, Hilgenfeldt S and Lohse D 2005 Exp. Fluids 41 147
[28] Guédra M, Cornu C and Inserra C 2017 Ultrason. Sonochem. 38 168
[29] Wen N, Snyder K, Scheib S, Qin Y, Li H and Chetty I J 2016 Med. Phys. 43 3448
[30] Nie G, Hu K, RenW, Zhou P, Duan X, Xiao L andWang S 2021 Water. Res. 198 117
[31] Hatanaka S I, Yasui K, Kozuka T, Tuziuti T and Mitome H 2002 Ultrason. Sonochem. 40 655
[32] Hatanaka S I, Yasui K, Kozuka T, Tuziuti T and Mitome H 2001 Jpn. J. Appl. Phys. 40 3856
[33] Thangavadivel K, Okitsu K, Owens G, Lesniewski P J and Nishimura R 2013 J. Environ. Chem. Eng. 1 275
[34] Asakura Y, Nishida T, Matsuoka T and Koda S 2008 Ultrason. Sonochem. 15 244
[35] Son Y, Lim M, Ashokkumar M and Khim J 2011 J. Phys. Chem. C 115 4096
[1] Morphological analysis for thermodynamics of cavitation collapse near fractal solid wall
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), and Qingbang Han(韩庆邦). Chin. Phys. B, 2024, 33(6): 064701.
[2] Behaviors of cavitation bubbles driven by high-intensity ultrasound
Chen-Yang Huang(黄晨阳), Fan Li(李凡), Shi-Yi Feng(冯释毅), Cheng-Hui Wang(王成会), Shi Chen(陈时), Jing Hu(胡静), Xin-Rui He(何芯蕊), and Jia-Kai Song(宋家凯). Chin. Phys. B, 2024, 33(2): 024301.
[3] Bubble nucleation in spherical liquid cavity wrapped by elastic medium
Xian-Mei Zhang(张先梅), Fan Li(李凡), Cheng-Hui Wang(王成会), Jing Hu(胡静), Run-Yang Mo(莫润阳), Zhuang-Zhi Shen(沈壮志), Jian-Zhong Guo(郭建中), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(6): 064303.
[4] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[5] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
[6] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[7] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[8] Theoretical estimation of sonochemical yield in bubble cluster in acoustic field
Zhuang-Zhi Shen(沈壮志). Chin. Phys. B, 2020, 29(1): 014304.
[9] Theoretical prediction of the yield of strong oxides under acoustic cavitation
Jing Sun(孙晶), Zhuangzhi Shen(沈壮志), Runyang Mo(莫润阳). Chin. Phys. B, 2019, 28(1): 014301.
[10] Impact of cavitation on lesion formation induced by high intensity focused ultrasound
Pengfei Fan(范鹏飞), Jie Yu(于洁), Xin Yang(杨鑫), Juan Tu(屠娟), Xiasheng Guo(郭霞生), Pintong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2017, 26(5): 054301.
[11] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[12] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[13] Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications
Xu-Dong Teng(滕旭东), Xia-Sheng Guo(郭霞生), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2016, 25(12): 124308.
[14] Ultrasound-mediated transdermal drug delivery of fluorescent nanoparticles and hyaluronic acid into porcine skin in vitro
Huan-Lei Wang(王焕磊), Peng-Fei Fan(范鹏飞), Xia-Sheng Guo(郭霞生), Juan Tu(屠娟), Yong Ma(马勇), Dong Zhang(章东). Chin. Phys. B, 2016, 25(12): 124314.
[15] Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number
Ye Peng-Cheng (叶鹏程), Pan Guang (潘光). Chin. Phys. B, 2015, 24(6): 066401.
No Suggested Reading articles found!