|
|
Tunable phonon-photon coupling induces double magnomechanically induced transparency and enhances slow light in an atom-opto-magnomechanical system |
M'bark Amghar†, Noura Chabar, and Mohamed Amazioug‡ |
LPTHE, Department of Physics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco |
|
|
Abstract We theoretically investigate the magnomechanically induced transparency phenomenon, Fano resonance and the slow-fast light effect in the situation where an atomic ensemble is placed inside the hybrid cavity of an opto-magnomechanical system. The system is driven by dual optical and phononic drives. We show double magnomechanically induced transparency in the probe output spectrum by exploiting the phonon-photon coupling strength. Then, we study the effects of the decay rate of the cavity and the atomic ensemble on magnomechanically induced transparency. In addition, we demonstrate that effective detuning of the cavity field frequency changes the transparency window from a symmetrical to an asymmetrical profile, resembling Fano resonances. Further, the fast and slow light effects in the system are explored. We show that the slow light profile is enhanced by adjusting the phonon-photon coupling strength. This result may have potential applications in quantum information processing and communication.
|
Received: 17 August 2024
Revised: 20 October 2024
Accepted manuscript online: 30 October 2024
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: M. Amghar acknowledges the financial support of the National Center for Scientific and Technical Research (CNRST) through the ‘PhD-Associate Scholarship-PASS’ program. |
Corresponding Authors:
M'bark Amghar, Mohamed Amazioug
E-mail: amghar.mbark98@gmail.com;amazioug@gmail.com
|
Cite this article:
M'bark Amghar, Noura Chabar, and Mohamed Amazioug Tunable phonon-photon coupling induces double magnomechanically induced transparency and enhances slow light in an atom-opto-magnomechanical system 2024 Chin. Phys. B 33 120308
|
[1] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [2] Liao Q, Xiao X, Nie W and Zhou N 2020 Opt. Express 28 5288 [3] Safavi-Naeini A H, Alegre T M, Chan J, Eichenfield M, Winger M, Lin Q and Painter O 2011 Nature 472 69 [4] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [5] Amghar M and Amazioug M 2024 Int. J. Quantum Inf. 2450043 [6] Qasymeh M, Hunza M, Asjad M, Abbas T, Teklu B and Eleuch H Tunable Electromagnetically Induced Multi-Transparencies in Hybrid Optomechanical System Incorporating Atomic Medium Available at SSRN 4210409 [7] Zhang X Y, Zhou Y H, Guo Y Q and Yi X X 2018 Phys. Rev. A 98 033832 [8] Lei F C, Gao M, Du C, Jing Q L and Long G L 2015 Opt. Express 23 11508 [9] Boller K J, Imamoğlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593 [10] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [11] Paspalakis E and Knight P L 2002 Phys. Rev. A 66 015802 [12] Wu Y and Yang X 2005 Phys. Rev. A 71 053806 [13] Roghani M, Breuer H P and Helm H 2010 Phys. Rev. A 81 033418 [14] Abdumalikov Jr A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601 [15] Abdi M, Pirandola S, Tombesi P and Vitali D 2012 Phys. Rev. Lett. 109 143601 [16] Asjad M, Li J, Zhu S Y and You J Q 2023 Fundam. Res. 3 3 [17] Singh S K, Mazaheri M, Peng J X, Sohail A, Gu Z and Asjad M 2023 Quant. Inf. Process. 22 198 [18] Amazioug M and Nassik M 2019 Int. J. Quantum Inf. 17 1950045 [19] Amazioug M, Singh S, Teklu B and Asjad M 2023 Entropy 25 1462 [20] Amazioug M and Daoud M 2021 Eur. Phys. J. D 75 178 [21] Amazioug M, Teklu B and Asjad M 2023 Sci. Rep. 13 3833 [22] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302 [23] Amazioug M, Dutykh D S and Asjad M 2023 arXiv:2311.06578v3 [quant-ph] [24] Noura C, M’bark A and Mohamed A 2024 Phys. Lett. A 519 129712 [25] Marangos J P 1998 J. Mod. Opt. 45 471 [26] Jiang C, Liu H, Cui Y, Li X, Chen G and Chen B 2013 Opt. Express 21 12165 [27] Wu S C, Qin L G, Jing J, Yan T M, Lu J and Wang Z Y 2018 Phys. Rev. A 98 013807 [28] Han Y, Cheng J and Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505 [29] Li X, Nie W, Chen A and Lan Y 2018 Phys. Rev. A 98 053848 [30] Jiang C, Jiang L, Yu H, Cui Y, Li X and Chen G 2017 Phys. Rev. A 96 053821 [31] Fano U 1961 Phys. Rev. 124 1866 [32] Zangeneh-Nejad F and Fleury R 2019 Phys. Rev. Lett. 122 014301 [33] Qu K and Agarwal G S 2013 Phys. Rev. A 87 063813 [34] Rybin M V, Khanikaev A B, Inoue M, Samusev K B, Steel M J, Yushin G and Limonov M F 2009 Phys. Rev. Lett. 103 023901 [35] Xiao Y F, Li M, Liu Y C, Li Y, Sun X and Gong Q 2010 Phys. Rev. A 82 065804 [36] Amghar M, Chabar N and Amazioug M 2024 arXiv:2407.04430v1 [quant-ph] [37] Zhang X, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286 [38] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601 [39] Potts C A, Varga E, Bittencourt V A, Kusminskiy S V and Davis J P 2021 Phys. Rev. X 11 031053 [40] Shen R C, Li J, Fan Z Y, Wang Y P and You J Q 2022 Phys. Rev. Lett. 129 123601 [41] Li J, Zhu S Y and Agarwal G S 2019 Phys. Rev. A 99 021801 [42] Li J and Zhu S Y 2019 New J. Phys. 21 085001 [43] Ding M S, Zheng L and Li C 2020 JOSA B 37 627 [44] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101 [45] Kong C, Wang B, Liu Z X, Xiong H and Wu Y 2019 Opt. Express 27 5544 [46] Yuan H Y, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1 [47] Ding M S, Zheng L and Li C 2019 Sci. Rep. 9 15723 [48] Yu M, Shen H and Li J 2020 Phys. Rev. Lett. 124 213604 [49] Sarma B, Busch T and Twamley J 2021 New J. Phys. 23 043041 [50] Xiong H 2023 Fundam. Res. 3 8 [51] Xie J K, Ma S L and Li F L 2020 Phys. Rev. A 101 042331 [52] Ren Y L, Ma S L, Xie J K, Li X K, Cao M T and Li F L 2022 Phys. Rev. A 105 013711 [53] Ren Y L, Ma S L and Li F L 2022 Phys. Rev. A 106 053714 [54] Xie J, Ma S, Ren Y, Li X, Gao S and Li F 2023 New J. Phys. 25 073009 [55] Ren Y L, Ma S L, Xie J K, Li X K and Li F L 2021 Opt. Express 29 41399 [56] Fan Z Y, Shen R C, Wang Y P, Li J and You J Q 2022 Phys. Rev. A 105 033507 [57] Fan Z Y, Qian H and Li J 2022 Quant. Sci. Technol. 8 015014 [58] Fan Z Y, Qiu L, Gröblacher S and Li J 2023 Laser Photonics Rev. 17 2200866 [59] Liao Q, Peng K and Qiu H 2023 Chin. Phys. B 32 054205 [60] Heyroth F, Hauser C, Trempler P, Geyer P, Syrowatka F, Dreyer R, Ebbinghaus S G, Woltersdorf G and Schmidt G 2019 Phys. Rev. Appl. 12 054031 [61] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72 [62] Fan Z Y, Qian H, Zuo X and Li J 2023 Phys. Rev. A 108 023501 [63] Gardiner C and Zoller P 2004 Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics (Springer Science and Business Media) [64] Tarhan D, Huang S and Müstecaplıoğlu Ö E 2013 Phys. Rev. A 87 013824 [65] Akram M J, Khan M M and Saif F 2015 Phys. Rev. A 92 023846 [66] Akram M J, Ghafoor F and Saif F 2015 J. Phys. B: At. Mol. Opt. Phys. 48 065502 [67] Liao Q, Peng K and Qiu H 2023 Chin. Phys. B 32 054205 [68] Yasir K A and Liu W M 2016 Sci. Rep. 6 22651 [69] Ullah K 2019 Eur. Phys. J. D 73 267 [70] Jiang C, Jiang L, Yu H, Cui Y, Li X and Chen G 2017 Phys. Rev. A 96 053821 [71] Gu K H, Yan X B, Zhang Y, Fu C B, Liu Y M, Wang X and Wu J H 2015 Opt. Commun. 338 569 [72] Safavi-Naeini A H et al. 2011 Nature 472 69 [73] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|