Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120308    DOI: 10.1088/1674-1056/ad8cbb
GENERAL Prev   Next  

Tunable phonon-photon coupling induces double magnomechanically induced transparency and enhances slow light in an atom-opto-magnomechanical system

M'bark Amghar†, Noura Chabar, and Mohamed Amazioug‡
LPTHE, Department of Physics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
Abstract  We theoretically investigate the magnomechanically induced transparency phenomenon, Fano resonance and the slow-fast light effect in the situation where an atomic ensemble is placed inside the hybrid cavity of an opto-magnomechanical system. The system is driven by dual optical and phononic drives. We show double magnomechanically induced transparency in the probe output spectrum by exploiting the phonon-photon coupling strength. Then, we study the effects of the decay rate of the cavity and the atomic ensemble on magnomechanically induced transparency. In addition, we demonstrate that effective detuning of the cavity field frequency changes the transparency window from a symmetrical to an asymmetrical profile, resembling Fano resonances. Further, the fast and slow light effects in the system are explored. We show that the slow light profile is enhanced by adjusting the phonon-photon coupling strength. This result may have potential applications in quantum information processing and communication.
Keywords:  cavity magnomechanics      magnomechanically induced transparency      Fano resonance      absorption      dispersion      transmission      slow light      fast light  
Received:  17 August 2024      Revised:  20 October 2024      Accepted manuscript online:  30 October 2024
PACS:  03.67.-a (Quantum information)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: M. Amghar acknowledges the financial support of the National Center for Scientific and Technical Research (CNRST) through the ‘PhD-Associate Scholarship-PASS’ program.
Corresponding Authors:  M'bark Amghar, Mohamed Amazioug     E-mail:  amghar.mbark98@gmail.com;amazioug@gmail.com

Cite this article: 

M'bark Amghar, Noura Chabar, and Mohamed Amazioug Tunable phonon-photon coupling induces double magnomechanically induced transparency and enhances slow light in an atom-opto-magnomechanical system 2024 Chin. Phys. B 33 120308

[1] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[2] Liao Q, Xiao X, Nie W and Zhou N 2020 Opt. Express 28 5288
[3] Safavi-Naeini A H, Alegre T M, Chan J, Eichenfield M, Winger M, Lin Q and Painter O 2011 Nature 472 69
[4] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[5] Amghar M and Amazioug M 2024 Int. J. Quantum Inf. 2450043
[6] Qasymeh M, Hunza M, Asjad M, Abbas T, Teklu B and Eleuch H Tunable Electromagnetically Induced Multi-Transparencies in Hybrid Optomechanical System Incorporating Atomic Medium Available at SSRN 4210409
[7] Zhang X Y, Zhou Y H, Guo Y Q and Yi X X 2018 Phys. Rev. A 98 033832
[8] Lei F C, Gao M, Du C, Jing Q L and Long G L 2015 Opt. Express 23 11508
[9] Boller K J, Imamoğlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[10] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[11] Paspalakis E and Knight P L 2002 Phys. Rev. A 66 015802
[12] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[13] Roghani M, Breuer H P and Helm H 2010 Phys. Rev. A 81 033418
[14] Abdumalikov Jr A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601
[15] Abdi M, Pirandola S, Tombesi P and Vitali D 2012 Phys. Rev. Lett. 109 143601
[16] Asjad M, Li J, Zhu S Y and You J Q 2023 Fundam. Res. 3 3
[17] Singh S K, Mazaheri M, Peng J X, Sohail A, Gu Z and Asjad M 2023 Quant. Inf. Process. 22 198
[18] Amazioug M and Nassik M 2019 Int. J. Quantum Inf. 17 1950045
[19] Amazioug M, Singh S, Teklu B and Asjad M 2023 Entropy 25 1462
[20] Amazioug M and Daoud M 2021 Eur. Phys. J. D 75 178
[21] Amazioug M, Teklu B and Asjad M 2023 Sci. Rep. 13 3833
[22] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
[23] Amazioug M, Dutykh D S and Asjad M 2023 arXiv:2311.06578v3 [quant-ph]
[24] Noura C, M’bark A and Mohamed A 2024 Phys. Lett. A 519 129712
[25] Marangos J P 1998 J. Mod. Opt. 45 471
[26] Jiang C, Liu H, Cui Y, Li X, Chen G and Chen B 2013 Opt. Express 21 12165
[27] Wu S C, Qin L G, Jing J, Yan T M, Lu J and Wang Z Y 2018 Phys. Rev. A 98 013807
[28] Han Y, Cheng J and Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505
[29] Li X, Nie W, Chen A and Lan Y 2018 Phys. Rev. A 98 053848
[30] Jiang C, Jiang L, Yu H, Cui Y, Li X and Chen G 2017 Phys. Rev. A 96 053821
[31] Fano U 1961 Phys. Rev. 124 1866
[32] Zangeneh-Nejad F and Fleury R 2019 Phys. Rev. Lett. 122 014301
[33] Qu K and Agarwal G S 2013 Phys. Rev. A 87 063813
[34] Rybin M V, Khanikaev A B, Inoue M, Samusev K B, Steel M J, Yushin G and Limonov M F 2009 Phys. Rev. Lett. 103 023901
[35] Xiao Y F, Li M, Liu Y C, Li Y, Sun X and Gong Q 2010 Phys. Rev. A 82 065804
[36] Amghar M, Chabar N and Amazioug M 2024 arXiv:2407.04430v1 [quant-ph]
[37] Zhang X, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286
[38] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[39] Potts C A, Varga E, Bittencourt V A, Kusminskiy S V and Davis J P 2021 Phys. Rev. X 11 031053
[40] Shen R C, Li J, Fan Z Y, Wang Y P and You J Q 2022 Phys. Rev. Lett. 129 123601
[41] Li J, Zhu S Y and Agarwal G S 2019 Phys. Rev. A 99 021801
[42] Li J and Zhu S Y 2019 New J. Phys. 21 085001
[43] Ding M S, Zheng L and Li C 2020 JOSA B 37 627
[44] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101
[45] Kong C, Wang B, Liu Z X, Xiong H and Wu Y 2019 Opt. Express 27 5544
[46] Yuan H Y, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1
[47] Ding M S, Zheng L and Li C 2019 Sci. Rep. 9 15723
[48] Yu M, Shen H and Li J 2020 Phys. Rev. Lett. 124 213604
[49] Sarma B, Busch T and Twamley J 2021 New J. Phys. 23 043041
[50] Xiong H 2023 Fundam. Res. 3 8
[51] Xie J K, Ma S L and Li F L 2020 Phys. Rev. A 101 042331
[52] Ren Y L, Ma S L, Xie J K, Li X K, Cao M T and Li F L 2022 Phys. Rev. A 105 013711
[53] Ren Y L, Ma S L and Li F L 2022 Phys. Rev. A 106 053714
[54] Xie J, Ma S, Ren Y, Li X, Gao S and Li F 2023 New J. Phys. 25 073009
[55] Ren Y L, Ma S L, Xie J K, Li X K and Li F L 2021 Opt. Express 29 41399
[56] Fan Z Y, Shen R C, Wang Y P, Li J and You J Q 2022 Phys. Rev. A 105 033507
[57] Fan Z Y, Qian H and Li J 2022 Quant. Sci. Technol. 8 015014
[58] Fan Z Y, Qiu L, Gröblacher S and Li J 2023 Laser Photonics Rev. 17 2200866
[59] Liao Q, Peng K and Qiu H 2023 Chin. Phys. B 32 054205
[60] Heyroth F, Hauser C, Trempler P, Geyer P, Syrowatka F, Dreyer R, Ebbinghaus S G, Woltersdorf G and Schmidt G 2019 Phys. Rev. Appl. 12 054031
[61] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
[62] Fan Z Y, Qian H, Zuo X and Li J 2023 Phys. Rev. A 108 023501
[63] Gardiner C and Zoller P 2004 Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics (Springer Science and Business Media)
[64] Tarhan D, Huang S and Müstecaplıoğlu Ö E 2013 Phys. Rev. A 87 013824
[65] Akram M J, Khan M M and Saif F 2015 Phys. Rev. A 92 023846
[66] Akram M J, Ghafoor F and Saif F 2015 J. Phys. B: At. Mol. Opt. Phys. 48 065502
[67] Liao Q, Peng K and Qiu H 2023 Chin. Phys. B 32 054205
[68] Yasir K A and Liu W M 2016 Sci. Rep. 6 22651
[69] Ullah K 2019 Eur. Phys. J. D 73 267
[70] Jiang C, Jiang L, Yu H, Cui Y, Li X and Chen G 2017 Phys. Rev. A 96 053821
[71] Gu K H, Yan X B, Zhang Y, Fu C B, Liu Y M, Wang X and Wu J H 2015 Opt. Commun. 338 569
[72] Safavi-Naeini A H et al. 2011 Nature 472 69
[73] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
[1] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[2] Frequency-modulated continuous-wave multiplexed gas sensing based on optical frequency comb calibration
Linhua Jia(贾琳华), Xinghua Qu(曲兴华), and Fumin Zhang (张福民). Chin. Phys. B, 2024, 33(9): 094201.
[3] In-phase and out-of-phase spin pumping effects in Py/Ru/Py synthetic antiferromagnetic structures
Zhaocong Huang(黄兆聪), Xuejian Tang(唐学健), Qian Chen(陈倩), Wei Jiang(蒋伟), Qingjie Guo(郭庆杰), Milad Jalali, Jun Du(杜军), and Ya Zhai(翟亚). Chin. Phys. B, 2024, 33(9): 097202.
[4] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[5] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[6] Revealing the microstructures of metal halide perovskite thin films via advanced transmission electron microscopy
Yeming Xian(冼业铭), Xiaoming Wang(王晓明), and Yanfa Yan(鄢炎发). Chin. Phys. B, 2024, 33(9): 096803.
[7] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[8] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[9] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[10] Pipeline thickness estimation using the dispersion of higher-order SH guided waves
Zhengchen Dai(代政辰), Jinxia Liu(刘金霞), Yunfei Long(龙云飞), Jianhai Zhang(张建海), Tribikram Kundu, and Zhiwen Cui(崔志文). Chin. Phys. B, 2024, 33(7): 074301.
[11] Effects of cross-Kerr coupling on transmission spectrum of double-cavity optomechanical system
Li-Teng Chen(陈立滕), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Jie-Hui Huang(黄接辉), Nan-Run Zhou(周南润), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2024, 33(6): 064204.
[12] Thermal management by manipulating electromagnetic parameters
Yun Wang(王云), Di-Fei Liang(梁迪飞), Tian-Cheng Han(韩天成), and Long-Jiang Deng(邓龙江). Chin. Phys. B, 2024, 33(5): 058403.
[13] Studying the co-evolution of information diffusion, vaccination behavior and disease transmission in multilayer networks with local and global effects
Liang'an Huo(霍良安) and Bingjie Wu(武兵杰). Chin. Phys. B, 2024, 33(3): 038702.
[14] High-efficiency ultra-fast all-optical photonic crystal diode based on the lateral-coupled nonlinear elliptical defect
Daxing Li(李大星), Kaizhu Liu(刘凯柱), Chunlong Yu(余春龙), Kuo Zhang(张括),Yueqin Liu(刘跃钦), and Shuai Feng(冯帅). Chin. Phys. B, 2024, 33(3): 034215.
[15] Dynamics of information diffusion and disease transmission in time-varying multiplex networks with asymmetric activity levels
Xiao-Xiao Xie(谢笑笑), Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ying-Ying Cheng(程英英). Chin. Phys. B, 2024, 33(3): 038704.
No Suggested Reading articles found!