Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120307    DOI: 10.1088/1674-1056/ad78d7
GENERAL Prev   Next  

Quantum state estimation based on deep learning

Haowen Xiao(肖皓文) and Zhiguang Han(韩枝光)†
School of Information and Communication Engineering, Hainan University, Haikou 570228, China
Abstract  We used deep learning techniques to construct various models for reconstructing quantum states from a given set of coincidence measurements. Through simulations, we have demonstrated that our approach generates functionally equivalent reconstructed states for a wide range of pure and mixed input states. Compared with traditional methods, our system offers the advantage of faster speed. Additionally, by training our system with measurement results containing simulated noise sources, the system shows a significant improvement in average fidelity compared with typical reconstruction methods. We also found that constraining the variational manifold to physical states, i.e., positive semi-definite density matrices, greatly enhances the quality of the reconstructed states in the presence of experimental imperfections and noise. Finally, we validated the correctness and superiority of our model by using data generated on IBM Quantum Platform, a real quantum computer.
Keywords:  deep learning      quantum state estimation      IBM quantum processor  
Received:  14 June 2024      Revised:  28 August 2024      Accepted manuscript online:  10 September 2024
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
Corresponding Authors:  Zhiguang Han     E-mail:  hanzhiguang@hainanu.edu.cn

Cite this article: 

Haowen Xiao(肖皓文) and Zhiguang Han(韩枝光) Quantum state estimation based on deep learning 2024 Chin. Phys. B 33 120307

[1] D’Alessandro D 2003 J. Phys. A: Math. Gen. 36 9721
[2] Fano U 1957 Rev. Mod. Phys. 29 74
[3] Smith A, Riofrio C A, Anderson B E, Sosa-Martinez H, Deutsch I H and Jessen P S 2013 Phys. Rev. A 87 030102(R)
[4] Mario M 2018 Journal of Applied Mathematics and Physics 6 1363
[5] Lukens J M, Law K J H, Jasra A and Lougovski P 2020 New J. Phys. 22 063038
[6] Rumelhart D E, Hinton G E and Williams R J 1986 Nature 323 533
[7] Xu Q and Xu S Q 2018 arXiv c-prints arXiv:1811.06654
[8] Xin T, Lu S R, Cao N P, Galit Anikeeva, Lu D W, Li J, Long G L and Zeng B 2019 Npj Quantum Inform. 5 S127
[9] Li H and Cheng J 2023 Chin. Phys. B 32 100602
[10] Chen J, Dawkins H, Ji Z, Johnston N, Kribs D, Shultz F and Zeng B 2013 Phys. Rev. A 88 012109
[11] Toninelli E, Ndagano B, Valles A, Sephton B, Nape I, Ambrosio A, Capasso F, Padgett M J and Forbes A 2019 Adv. Opt. Photon. 11 67
[12] Bayraktar O, Swillo M, Canalias C and Bjork G 2016 Phys. Rev. A 94 020105
[13] Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303
[14] James D F, Kwiat P G, Munro W J and White A G 20010 Phys. Rev. A 64 052312
[15] Schmied R 2016 J. Mod. Opt. 63 1744
[16] Garcia-Martin D and Sierra G 2018 JAMP 06 1760
[17] Liu X M, Zhang Z Y and Liu W J 2023 Chin. Phys. Lett. 40 070501
[18] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge University Press)
[19] Zyczkowski K, Penson K A, Nechita I and Collins B 2011 J. Math. Phys. 52 062201
[20] Bravyi S and Kitaev A 2002 Annals of Physics 298 210
[21] Jozsa R 1993 Journal of Modern Optics
[22] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[23] Goodfellow J I, Bengio Y and Courville A 2016 Genetic Programming and Evolvable Machines 19 305
[24] Simonyan K and Zisserman A 2014 arXiv:1409.1556
[25] He K M, Zhang X Y, Ren S Q and Sun J 2015 arXiv:1512.03385
[26] Huang G, Liu Z, L. Van Der Maaten and Weinberger K Q 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 2261-2269
[27] Szegedy C, Liu W, Jia Y Q, et al. 2015 015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1-9
[28] Dur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[29] Hong H Y, Lu X J and Kuang S 2023 Chin. Phys. B 32 040603
[1] Accurate prediction of essential proteins using ensemble machine learning
Dezhi Lu(鲁德志), Hao Wu(吴淏), Yutong Hou(侯俞彤), Yuncheng Wu(吴云成), Yuanyuan Liu(刘媛媛), and Jinwu Wang(王金武). Chin. Phys. B, 2025, 34(1): 018901.
[2] A large language model-powered literature review for high-angle annular dark field imaging
Wenhao Yuan(袁文浩), Cheng Peng(彭程), and Qian He(何迁). Chin. Phys. B, 2024, 33(9): 098703.
[3] High-quality ghost imaging based on undersampled natural-order Hadamard source
Kang Liu(刘炕), Cheng Zhou(周成), Jipeng Huang(黄继鹏), Hongwu Qin(秦宏伍), Xuan Liu(刘轩), Xinwei Li(李鑫伟), and Lijun Song(宋立军). Chin. Phys. B, 2024, 33(9): 094204.
[4] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[5] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[6] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[7] A deep learning method based on prior knowledge with dual training for solving FPK equation
Denghui Peng(彭登辉), Shenlong Wang(王神龙), and Yuanchen Huang(黄元辰). Chin. Phys. B, 2024, 33(1): 010202.
[8] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
[9] Crysformer: An attention-based graph neural network for properties prediction of crystals
Tian Wang(王田), Jiahui Chen(陈家辉), Jing Teng(滕婧), Jingang Shi(史金钢),Xinhua Zeng(曾新华), and Hichem Snoussi. Chin. Phys. B, 2023, 32(9): 090703.
[10] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[11] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
[12] Inatorial forecasting method considering macro and micro characteristics of chaotic traffic flow
Yue Hou(侯越), Di Zhang(张迪), Da Li(李达), and Ping Yang(杨萍). Chin. Phys. B, 2023, 32(10): 100508.
[13] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[14] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[15] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
No Suggested Reading articles found!