Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 016802    DOI: 10.1088/1674-1056/ad9ba3
RAPID COMMUNICATION Prev   Next  

Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS2 in high-resolution transmission electron microscopy

Yu Meng(蒙宇)1,†, Shuya Wang(王淑雅)1,†, Xibiao Ren(任锡标)2, Han Xue(薛涵)3, Xuejun Yue(岳学军)1, Chuanhong Jin(金传洪)2,‡, Shanggang Lin(林上港)1,§, and Fang Lin(林芳)1,¶
1 Department of Applied Physics, College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China;
2 State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
3 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Abstract  High-resolution transmission electron microscopy (HRTEM) promises rapid atomic-scale dynamic structure imaging. Yet, the precision limitations of aberration parameters and the challenge of eliminating aberrations in $Cs$-corrected transmission electron microscopy constrain resolution. A machine learning algorithm is developed to determine the aberration parameters with higher precision from small, lattice-periodic crystal images. The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide (MoS$_{2}$) monolayer with 25 variables (14 aberrations) resolved in wide ranges. Using these measured parameters, the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS$_{2}$ monolayers. The images were acquired due to the unexpected movement of the specimen holder. Four-dimensional data extraction reveals time-varying atomic structures and ripple. In particular, the atomic evolution of the sulfur-vacancy point and line defects, as well as the edge structure near the amorphous, is visualized as the resolution has been improved from about 1.75 Å to 0.9 Å. This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.
Keywords:  aberration measurement      high-resolution transmission electron microscopy      feature-extraction networks      exit-wave reconstruction      monolayer MoS$_{2}$  
Received:  01 October 2024      Revised:  01 November 2024      Accepted manuscript online:  09 December 2024
PACS:  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
  43.60.Lq (Acoustic imaging, displays, pattern recognition, feature extraction)  
  43.60.Tj (Wave front reconstruction, acoustic time-reversal, and phase conjugation)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  42.15.Fr (Aberrations)  
Fund: F. Lin acknowledges financial support from the National Natural Science Foundation of China (Grant No. 61971201).
Corresponding Authors:  Chuanhong Jin, Shanggang Lin, Fang Lin     E-mail:  chhjin@zju.edu.cn;shglin@scau.edu.cn;linfang@scau.edu.cn

Cite this article: 

Yu Meng(蒙宇), Shuya Wang(王淑雅), Xibiao Ren(任锡标), Han Xue(薛涵), Xuejun Yue(岳学军), Chuanhong Jin(金传洪), Shanggang Lin(林上港), and Fang Lin(林芳) Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS2 in high-resolution transmission electron microscopy 2025 Chin. Phys. B 34 016802

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Shanmugam V, Mensah R A, Babu K, Gawusu S, Chanda A, Tu Y, Neisiany R E, Försth M, Sas G and Das O 2022 Part. Syst. Charact. 39 2200031
[3] Yang S J, Choi M Y and Kim C J 2023 Adv. Mater. 35 2203425
[4] Rehman M U, Hua C Q and Lu Y H 2020 Chin. Phys. B 29 057304
[5] Luo R, Gao M, Wang C, Zhu J, Guzman R and Zhou W 2024 Adv. Funct. Mater. 34 2307625
[6] Zhao X, Fu D, Ding Z, Zhang Y,Wan D, Tan S J, Chen Z, Leng K, Dan J and Fu W 2018 Nano Lett. 18 482
[7] Tai K L, Huang C W, Cai R F, Huang G M, Tseng Y T, Chen J and Wu W W 2020 Small 16 1905516
[8] Mendes R G, Pang J, Bachmatiuk A, Ta H Q, Zhao L, Gemming T, Fu L, Liu Z and Rümmeli M H 2019 ACS Nano 13 978
[9] Van Dyck D, Jinschek J R and Chen F R 2012 Nature 486 243
[10] Chang S L, Dwyer C, Barthel J, Boothroyd C B and Dunin-Borkowski R E 2016 Ultramicroscopy 161 90
[11] Lin Y, Dumcenco D O, Huang Y and Suenaga K 2014 Nat. Nanotechnol. 9 391
[12] Robinson A W, Wells J, Moshtaghpour A, Nicholls D, Huang C, Velazco-Torrejon A, Nicotra G, Kirkland A I and Browning N D 2024 Chin. Phys. B 33 116804
[13] Segawa Y, Yamazaki K, Yamasaki J and Gohara K 2021 Nanoscale 13 5847
[14] Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C, Crommie M F, Cohen M L and Louie S G 2009 Science 323 1705
[15] Warner J H, Lee G, He K, Robertson A W, Yoon E and Kirkland A I 2013 ACS Nano 7 9860
[16] Li J, Hu C,Wu H, Liu Z, Cheng S, ZhangW, Shu H and Chang H 2016 Cryst. Growth Des. 16 7094
[17] Robertson A W, Lee G, He K, Gong C, Chen Q, Yoon E, Kirkland A I and Warner J H 2015 ACS Nano 9 11599
[18] Wang S, Lee G D, Lee S, Yoon E and Warner J H 2016 ACS Nano 10 5419
[19] Coene W, Thust A, De Beeck M O and Van Dyck D 1996 Ultramicroscopy 64 109
[20] Wang Z, Byun J, Lee S, Seo J, Park B, Kim J C, Jeong H Y, Bang J, Lee J and Oh S H 2022 Nat. Commun. 13 5616
[21] Mohn M J, Biskupek J, Lee Z, Rose H and Kaiser U 2020 Ultramicroscopy 219 113119
[22] Lehtinen O, Geiger D, Lee Z, Whitwick M B, Chen M, Kis A and Kaiser U 2015 Ultramicroscopy 151 130
[23] Lin F, Jian J, Ye L and Jin C 2015 Microscopy 64 311
[24] Uhlemann S and Haider M 1998 Ultramicroscopy 72 109
[25] Zemlin F, Weiss K, Schiske P, Kunath W and Herrmann K 1978 Ultramicroscopy 3 49
[26] Lin F, Ren X B, ZhouWP, Zhang L Y, Xiao Y, Zhang Q, Xu H T, Li H and Jin C H 2018 Micron 114 23
[27] Zemlin J and Zemlin F 2002 Ultramicroscopy 93 77
[28] Hetherington C 2004 Mater. Today 7 50
[29] Meyer R R, Kirkland A I and Saxton W O 2002 Ultramicroscopy 92 89
[30] Kirkland A I, Meyer R R and Chang L S 2006 Microsc. Microanal. 12 461
[31] Kirkland A I and Meyer R R 2004 Microsc. Microanal. 10 401
[32] Barthel J and Thust A 2010 Ultramicroscopy 111 27
[33] Vargas J, Otón J, Marabini R, Jonic S, de La Rosa-Trevín J M, Carazo and Sorzano C 2013 J. Struct. Biol. 181 136
[34] Vulović M, Franken E, Ravelli R B, van Vliet L J and Rieger B 2012 Ultramicroscopy 116 115
[35] Huang Z, Baldwin P R, Mullapudi S and Penczek P A 2003 J. Struct. Biol. 144 79
[36] Biskupek J, Hartel P, Haider M and Kaiser U 2012 Ultramicroscopy 116 1
[37] Ophus C, Rasool H I, Linck M, Zettl A and Ciston J 2016 Advanced Structural and Chemical Imaging 2 1
[38] Coene W, Janssen G, de Beeck M O and Van Dyck D 1992 Phys. Rev. Lett. 69 3743
[39] Allen L J, Mcbride W, O’Leary N L and Oxley M P 2004 Ultramicroscopy 100 91
[40] Hsieh W, Chen F, Kai J and Kirkland A I 2004 Ultramicroscopy 98 99
[41] Wu K, Yang B S, Xue W H, Sun D P, Ge B H and Wang Y M 2024 Chin. Phys. B 33 076802
[42] Larsen M H L, Dahl F, Hansen L P, Barton B, Kisielowski C, Helveg S, Winther O, Hansen T W and Schiøtz J 2023 Ultramicroscopy 243 113641
[43] Zhang X, Chen S, Wang S, Huang Y, Jin C and Lin F 2024 J. Microsc. 296 24
[44] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A 2015 Proceedings of the IEEE conference on computer vision and pattern recognition p. 1
[45] Yuan P J, Wu K P, Chen S W, Zhang D L, Jin C H, Yao Y and Lin F 2022 J. Microsc. 287 93
[46] Zhang Q, Zhang L Y, Jin C H, Wang Y M and Lin F 2019 Ultramicroscopy 202 114
[1] Quantitative HRTEM and its application in the study of oxide materials
Chun-Lin Jia(贾春林), Shao-Bo Mi(米少波), Lei Jin(金磊). Chin. Phys. B, 2018, 27(5): 056803.
[2] Microstructure and photocatalytic activity of titanium dioxide nanoparticles
Li Chun-Yan (李春艳), Wang Jiang-Bin (王江彬), Wang Yi-Qian (王乙潜). Chin. Phys. B, 2012, 21(9): 098102.
[3] Charge ordering modulations in Bi0.4Ca0.6MnO3 film with a thickness of 110 nm
Ding Yan-Hua (丁艳华), Wang Yi-Qian (王乙潜), Cai Rong-Sheng (蔡鎔声), Chen Yun-Zhong (陈允忠), Sun Ji-Rong (孙继荣 ). Chin. Phys. B, 2012, 21(8): 087502.
[4] Experimental verification of Foreman dislocation model
Zhao Chun-Wang(赵春旺), Xing Yong-Ming(邢永明), and Bai Pu-Cun(白朴存). Chin. Phys. B, 2009, 18(6): 2464-2468.
[5] Study of superstructure II in multiferroic BiMnO3
Ge Bing-Hui(葛炳辉), Li Fang-Hua(李方华), Li Xue-Ming(李雪明), Wang Yu-Mei (王玉梅), Chi Zhen-Hua (迟振华), and Jin Chang-Qing (靳常青). Chin. Phys. B, 2008, 17(9): 3163-3169.
No Suggested Reading articles found!