|
|
Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS2 in high-resolution transmission electron microscopy |
Yu Meng(蒙宇)1,†, Shuya Wang(王淑雅)1,†, Xibiao Ren(任锡标)2, Han Xue(薛涵)3, Xuejun Yue(岳学军)1, Chuanhong Jin(金传洪)2,‡, Shanggang Lin(林上港)1,§, and Fang Lin(林芳)1,¶ |
1 Department of Applied Physics, College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China; 2 State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; 3 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
|
|
Abstract High-resolution transmission electron microscopy (HRTEM) promises rapid atomic-scale dynamic structure imaging. Yet, the precision limitations of aberration parameters and the challenge of eliminating aberrations in $Cs$-corrected transmission electron microscopy constrain resolution. A machine learning algorithm is developed to determine the aberration parameters with higher precision from small, lattice-periodic crystal images. The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide (MoS$_{2}$) monolayer with 25 variables (14 aberrations) resolved in wide ranges. Using these measured parameters, the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS$_{2}$ monolayers. The images were acquired due to the unexpected movement of the specimen holder. Four-dimensional data extraction reveals time-varying atomic structures and ripple. In particular, the atomic evolution of the sulfur-vacancy point and line defects, as well as the edge structure near the amorphous, is visualized as the resolution has been improved from about 1.75 Å to 0.9 Å. This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.
|
Received: 01 October 2024
Revised: 01 November 2024
Accepted manuscript online: 09 December 2024
|
PACS:
|
68.37.Og
|
(High-resolution transmission electron microscopy (HRTEM))
|
|
43.60.Lq
|
(Acoustic imaging, displays, pattern recognition, feature extraction)
|
|
43.60.Tj
|
(Wave front reconstruction, acoustic time-reversal, and phase conjugation)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
42.15.Fr
|
(Aberrations)
|
|
Fund: F. Lin acknowledges financial support from the National Natural Science Foundation of China (Grant No. 61971201). |
Corresponding Authors:
Chuanhong Jin, Shanggang Lin, Fang Lin
E-mail: chhjin@zju.edu.cn;shglin@scau.edu.cn;linfang@scau.edu.cn
|
Cite this article:
Yu Meng(蒙宇), Shuya Wang(王淑雅), Xibiao Ren(任锡标), Han Xue(薛涵), Xuejun Yue(岳学军), Chuanhong Jin(金传洪), Shanggang Lin(林上港), and Fang Lin(林芳) Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS2 in high-resolution transmission electron microscopy 2025 Chin. Phys. B 34 016802
|
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [2] Shanmugam V, Mensah R A, Babu K, Gawusu S, Chanda A, Tu Y, Neisiany R E, Försth M, Sas G and Das O 2022 Part. Syst. Charact. 39 2200031 [3] Yang S J, Choi M Y and Kim C J 2023 Adv. Mater. 35 2203425 [4] Rehman M U, Hua C Q and Lu Y H 2020 Chin. Phys. B 29 057304 [5] Luo R, Gao M, Wang C, Zhu J, Guzman R and Zhou W 2024 Adv. Funct. Mater. 34 2307625 [6] Zhao X, Fu D, Ding Z, Zhang Y,Wan D, Tan S J, Chen Z, Leng K, Dan J and Fu W 2018 Nano Lett. 18 482 [7] Tai K L, Huang C W, Cai R F, Huang G M, Tseng Y T, Chen J and Wu W W 2020 Small 16 1905516 [8] Mendes R G, Pang J, Bachmatiuk A, Ta H Q, Zhao L, Gemming T, Fu L, Liu Z and Rümmeli M H 2019 ACS Nano 13 978 [9] Van Dyck D, Jinschek J R and Chen F R 2012 Nature 486 243 [10] Chang S L, Dwyer C, Barthel J, Boothroyd C B and Dunin-Borkowski R E 2016 Ultramicroscopy 161 90 [11] Lin Y, Dumcenco D O, Huang Y and Suenaga K 2014 Nat. Nanotechnol. 9 391 [12] Robinson A W, Wells J, Moshtaghpour A, Nicholls D, Huang C, Velazco-Torrejon A, Nicotra G, Kirkland A I and Browning N D 2024 Chin. Phys. B 33 116804 [13] Segawa Y, Yamazaki K, Yamasaki J and Gohara K 2021 Nanoscale 13 5847 [14] Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C, Crommie M F, Cohen M L and Louie S G 2009 Science 323 1705 [15] Warner J H, Lee G, He K, Robertson A W, Yoon E and Kirkland A I 2013 ACS Nano 7 9860 [16] Li J, Hu C,Wu H, Liu Z, Cheng S, ZhangW, Shu H and Chang H 2016 Cryst. Growth Des. 16 7094 [17] Robertson A W, Lee G, He K, Gong C, Chen Q, Yoon E, Kirkland A I and Warner J H 2015 ACS Nano 9 11599 [18] Wang S, Lee G D, Lee S, Yoon E and Warner J H 2016 ACS Nano 10 5419 [19] Coene W, Thust A, De Beeck M O and Van Dyck D 1996 Ultramicroscopy 64 109 [20] Wang Z, Byun J, Lee S, Seo J, Park B, Kim J C, Jeong H Y, Bang J, Lee J and Oh S H 2022 Nat. Commun. 13 5616 [21] Mohn M J, Biskupek J, Lee Z, Rose H and Kaiser U 2020 Ultramicroscopy 219 113119 [22] Lehtinen O, Geiger D, Lee Z, Whitwick M B, Chen M, Kis A and Kaiser U 2015 Ultramicroscopy 151 130 [23] Lin F, Jian J, Ye L and Jin C 2015 Microscopy 64 311 [24] Uhlemann S and Haider M 1998 Ultramicroscopy 72 109 [25] Zemlin F, Weiss K, Schiske P, Kunath W and Herrmann K 1978 Ultramicroscopy 3 49 [26] Lin F, Ren X B, ZhouWP, Zhang L Y, Xiao Y, Zhang Q, Xu H T, Li H and Jin C H 2018 Micron 114 23 [27] Zemlin J and Zemlin F 2002 Ultramicroscopy 93 77 [28] Hetherington C 2004 Mater. Today 7 50 [29] Meyer R R, Kirkland A I and Saxton W O 2002 Ultramicroscopy 92 89 [30] Kirkland A I, Meyer R R and Chang L S 2006 Microsc. Microanal. 12 461 [31] Kirkland A I and Meyer R R 2004 Microsc. Microanal. 10 401 [32] Barthel J and Thust A 2010 Ultramicroscopy 111 27 [33] Vargas J, Otón J, Marabini R, Jonic S, de La Rosa-Trevín J M, Carazo and Sorzano C 2013 J. Struct. Biol. 181 136 [34] Vulović M, Franken E, Ravelli R B, van Vliet L J and Rieger B 2012 Ultramicroscopy 116 115 [35] Huang Z, Baldwin P R, Mullapudi S and Penczek P A 2003 J. Struct. Biol. 144 79 [36] Biskupek J, Hartel P, Haider M and Kaiser U 2012 Ultramicroscopy 116 1 [37] Ophus C, Rasool H I, Linck M, Zettl A and Ciston J 2016 Advanced Structural and Chemical Imaging 2 1 [38] Coene W, Janssen G, de Beeck M O and Van Dyck D 1992 Phys. Rev. Lett. 69 3743 [39] Allen L J, Mcbride W, O’Leary N L and Oxley M P 2004 Ultramicroscopy 100 91 [40] Hsieh W, Chen F, Kai J and Kirkland A I 2004 Ultramicroscopy 98 99 [41] Wu K, Yang B S, Xue W H, Sun D P, Ge B H and Wang Y M 2024 Chin. Phys. B 33 076802 [42] Larsen M H L, Dahl F, Hansen L P, Barton B, Kisielowski C, Helveg S, Winther O, Hansen T W and Schiøtz J 2023 Ultramicroscopy 243 113641 [43] Zhang X, Chen S, Wang S, Huang Y, Jin C and Lin F 2024 J. Microsc. 296 24 [44] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A 2015 Proceedings of the IEEE conference on computer vision and pattern recognition p. 1 [45] Yuan P J, Wu K P, Chen S W, Zhang D L, Jin C H, Yao Y and Lin F 2022 J. Microsc. 287 93 [46] Zhang Q, Zhang L Y, Jin C H, Wang Y M and Lin F 2019 Ultramicroscopy 202 114 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|