Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120303    DOI: 10.1088/1674-1056/ad84cf
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

Nonlinear enhanced mass sensor based on optomechanical system

Xin-Xin Man(满鑫鑫)1,2, Jing Sun(孙静)3, Wen-Zhao Zhang(张闻钊)3, Lijuan Luo(罗丽娟)2,†, and Guangri Jin(金光日)1,‡
1 Key Laboratory of Optical Field Manipulation of Zhejiang Province and Physics Department of Zhejiang Sci-Tech University, Hangzhou 310018, China;
2 Department of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China;
3 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  A high-precision and tunable mass detection scheme based on a double-oscillator optomechanical system is proposed. By designating one of the oscillators as the detection port, tiny mass signals can be probed through the frequency shift of the output spectrum, utilizing the system's optomechanically induced transparency (OMIT) effect. By solving the output of the optical mode, we demonstrate that the system exhibits two OMIT windows due to the double-oscillator coupling, with one window being strongly dependent on the mass to be detected. Characterizing the spectrum around this window enables high magnification and precise detection of the input signal under nonlinear parameter conditions. Additionally, our scheme shows resilience to environmental temperature variations and drive strength perturbations.
Keywords:  optomechanically induced transparency      optomechanical system      mass sensor  
Received:  14 August 2024      Revised:  03 October 2024      Accepted manuscript online:  09 October 2024
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.-p (Quantum optics)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: We thank Cheng Jiong for instructive discussions. Project supported by the Science Foundation of Zhejiang Sci-Tech University (Grant No. 18062145-Y), the National Natural Science Foundation of China (Grant Nos. 12075209 and 12074206), the Natural Science Foundation of Zhejiang Province (Grant No. LY22A040005), and the Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0300904).
Corresponding Authors:  Lijuan Luo, Guangri Jin     E-mail:  lijuanluo1224@hotmail.com;grjin@zstu.edu.cn

Cite this article: 

Xin-Xin Man(满鑫鑫), Jing Sun(孙静), Wen-Zhao Zhang(张闻钊), Lijuan Luo(罗丽娟), and Guangri Jin(金光日) Nonlinear enhanced mass sensor based on optomechanical system 2024 Chin. Phys. B 33 120303

[1] Parikh M,Wilczek F and Zahariade G 2021 Phys. Rev. Lett. 127 081602
[2] Marletto C and Vedral V 2017 Phys. Rev. Lett. 119 240402
[3] Ma Y, Danilishin S L, Zhao C, Miao H, Korth W Z, Chen Y, Ward R L and Blair D G 2014 Phys. Rev. Lett. 113 151102
[4] Crescini N, Alesini D, Braggio C, Carugno G, D’Agostino D, Di Gioacchino D, Falferi P, Gambardella U, Gatti C, Iannone G, Ligi C, Lombardi A, Ortolan A, Pengo R, Ruoso G and Taffarello L QUAX Collaboration 2020 Phys. Rev. Lett. 124 171801
[5] Ye J and Zoller P 2024 Phys. Rev. Lett. 132 190001
[6] Estrada J, Harnik R, Rodrigues D and Senger M 2021 PRX Quantum 2 030340
[7] Lopaeva E D, Ruo Berchera I, Degiovanni I P, Olivares S, Brida G and Genovese M 2013 Phys. Rev. Lett. 110 153603
[8] Lloyd S 2013 Science 321 1463
[9] Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H and Pirandola S 2015 Phys. Rev. Lett. 114 080503
[10] Xu X and Taylor J M 2014 Phys. Rev. A 90 043848
[11] Zhang W Z, Chen L B, Cheng J and Jiang Y F 2019 Phys. Rev. A 99 063811
[12] Liu Z, Liu Y Q, Mai Z Y, Yang Y J, Zhou N n and Yu C S 2024 Phys. Rev. A 109 023709
[13] Zhang K, Bariani F, Dong Y, Zhang W and Meystre P 2015 Phys. Rev. Lett. 114 113601
[14] Rong X, Jiao M, Geng J, Zhang B, Xie T, Shi F, Duan C K, Cai Y F and Du J 2018 Phys. Rev. Lett. 121 080402
[15] Rugar D, Budakian R, Mamin H J and Chui B W 2004 Nature 430 329
[16] Lecocq F, Teufel J D, Aumentado J and Simmonds R W 2015 Nat. Phys. 11 635
[17] Li J J and Zhu K D 2012 Appl. Phys. Lett. 101 141905
[18] Lecocq F, Clark J B, Simmonds RW, Aumentado J and Teufel J D 2015 Phys. Rev. X 5 041037
[19] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[20] Peano V, Schwefel H G L, Marquardt C and Marquardt F 2015 Phys. Rev. Lett. 115 243603
[21] Xia Y, Agrawal A R, Pluchar C M, Brady A J, Liu Z, Zhuang Q,Wilson D J and Zhang Z 2023 Nat. Photon. 17 470
[22] Wang C W, Niu W, Zhang Y, Cheng J and Zhang W Z 2023 Opt. Express 31 11561
[23] Li K, Davuluri S and Li Y 2018 Chin. Phys. B 27 084203
[24] Wu M, Hryciw A C, Healey C, Lake D P, Jayakumar H, Freeman M R, Davis J P and Barclay P E 2014 Phys. Rev. X 4 021052
[25] Shapiro J H 2020 IEEE Aerospace and Electronic Systems Magazine 35 8
[26] Regal C A, Teufel J D and Lehnert K W 2008 Nat. Phys. 4 555
[27] He Y 2015 Appl. Phys. Lett. 106 121905
[28] Liu F, Alaie S, Leseman Z C and Hossein-Zadeh M 2013 Opt. Express 21 19555
[29] Yang Y T, Callegari C, Feng X L, Ekinci K L and Roukes M L 2006 Nano Lett. 6 583
[30] Motazedifard A, Bemani F, Naderi M H, Roknizadeh R and Vitali D 2016 New J. Phys. 18 073040
[31] Allahverdi H, Motazedifard A, Dalafi A, Vitali D and NaderiMH 2022 Phys. Rev. A 106 023107
[32] Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A and Steele G A 2014 Nat. Nanotechnol. 9 820
[33] Cole G D, Wilson-Rae I, Werbach K, Vanner M R and Aspelmeyer M 2011 Nat. Commun. 2 231
[34] Imamoglu A and Whaley K B 2015 Phys. Rev. E 91 022714
[35] Baake E, Baake M and Wagner H 1998 Phys. Rev. E 57 1191
[36] York D M, Lee T S and Yang W 1998 Phys. Rev. Lett. 80 5011
[37] Liu J and Zhu K D 2018 Photonics Research 6 867
[38] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[39] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C and Dong C H 2016 Nat. Photon. 10 657
[40] Jing H, Özdemir c K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L and Nori F 2015 Scientific Reports 5 9663
[41] Agarwal G S and Jha S S 2013 Phys. Rev. A 88 013815
[42] Massel F, Cho S U, Pirkkalainen J M, Hakonen P J, Heikkilä T T and Sillanpää M A 2012 Nat. Commun. 3 987
[43] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[44] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Di Giuseppe G and Vitali D 2013 Phys. Rev. A 88 013804
[45] Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R and Kippenberg T J 2013 Nat. Phys. 9 179
[46] Peng J X, Chen Z, Yuan Q Z and Feng X L 2019 Phys. Rev. A 99 043817
[47] Wang Q, Li W J, Ma P C and He Z 2017 International Journal of Theoretical Physics 56 2212
[48] Wang Q and Li W J 2017 International Journal of Theoretical Physics 56 1346
[49] Patil Y S, Chakram S, Chang L and Vengalattore M 2015 Phys. Rev. Lett. 115 017202
[50] Lassagne B, Garcia-Sanchez D, Aguasca A and Bachtold A 2008 Nano Lett. 8 3735
[51] Li W, Li C and Song H 2017 Phys. Rev. A 95 023827
[52] ScullyMO and ZubairyMS 1997 Quantum Optics (Cambridge: Cambridge University Press)
[53] Mu Q X, Lang C and Zhang W Z 2019 Chin. Phys. B 28 114206
[54] Ekinci K L, Yang Y T and Roukes M L 2004 J. Appl. Phys. 95 2682
[55] Chen Y, Zhang Y L, Shen Z, Zou C L, Guo G C and Dong C H 2021 Phys. Rev. Lett. 126 123603
[1] Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering
Shan-Shan Chen(陈珊珊), Yi-Long Xie(谢亦龙), Jing-Jing Zhang(张京京), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), Huan Yang(杨桓), and Yong Ma(马勇). Chin. Phys. B, 2025, 34(1): 014201.
[2] Nonlinearly induced entanglement in dissipatively coupled optomechanical system
Wen-Quan Yang(杨文全), Xuan Leng(冷轩), Jiong Cheng(程泂), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2024, 33(6): 060313.
[3] Nonreciprocal mechanical entanglement in a spinning optomechanical system
Shan-Shan Chen(陈珊珊), Jing-Jing Zhang(张京京), Jia-Neng Li(李嘉能), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), and Huan Yang(杨桓). Chin. Phys. B, 2024, 33(11): 110305.
[4] Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force
Jimmi Hervé Talla Mbé, Ulrich Chancelin Tiofack Demanou, Christian Kenfack-Sadem, and Martin Tchoffo. Chin. Phys. B, 2023, 32(12): 124202.
[5] Quantum estimation of rotational speed in optomechanics
Hao Li(李浩) and Jiong Cheng(程泂). Chin. Phys. B, 2023, 32(10): 100602.
[6] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[10] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[11] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[12] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[13] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[14] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[15] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
No Suggested Reading articles found!