INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
Micron-resolved quantum precision measurement of magnetic field at the Tesla level |
Si-Han An(安思瀚)1, Shi-Yu Ge(葛仕宇)1, Wen-Tao Lu(卢文韬)2, Guo-Bin Chen(陈国彬)3, Sheng-Kai Xia(夏圣开)4, Ai-Qing Chen(陈爱庆)1, Cheng-Kun Wang(王成坤)1, Lin-Yan Yu(虞林嫣)1, Zhi-Qiang Zhang(张致强)1, Yang Wang(汪洋)5, Gui-Jin Tang(唐贵进)1, Hua-Fu Cheng(程华富)6, and Guan-Xiang Du(杜关祥)1,† |
1 College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 The School of Mechanical and Electrical Engineering, Suqian College, Suqian 223800, China; 4 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 5 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 6 Yichang Testing Technique R&D Institute, Yichang 443003, China |
|
|
Abstract We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer. Central to our system is a micron-sized fiber diamond probe positioned on the surface of a coplanar waveguide made of nonmagnetic materials. Calibrated with a nuclear magnetic resonance magnetometer, this probe demonstrates a broad magnetic field range from 10 mT to 1.5 T with a nonlinear error better than 0.0028% under a standard magnetic field generator and stability better than 0.0012% at a 1.5 T magnetic field. Finally, we demonstrate quantitative mapping of the vector magnetic field on the surface of a permanent magnet using the diamond magnetometer.
|
Received: 29 July 2024
Revised: 20 September 2024
Accepted manuscript online: 24 September 2024
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
75.50.Ww
|
(Permanent magnets)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFB2012600). |
Corresponding Authors:
Guan-Xiang Du
E-mail: duguanxiang@njupt.edu.cn
|
Cite this article:
Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥) Micron-resolved quantum precision measurement of magnetic field at the Tesla level 2024 Chin. Phys. B 33 120305
|
[1] Khan M A, Sun J, Li B D, Przybysz A and Kosel J 2012 Eng. Res. Express 3 022005 [2] Javor J, Stange A, Pollock C, Fuhr N and Bishop D J 2020 Microsyst. Nanoeng. 6 71 [3] Li Z, Ouyang Z R, Leng Z K, Zhang Y B, Zhang S, Lu Y F and Yan Z D 2022 Electronics 11 970 [4] Wang X L and Wang F H 2020 J. Magn. Mater. Devices 6 63 [5] Xu Z, Liu J and Zhang X X 2013 Modern Electronics Technique 12 29 [6] Qu S S and He Z W 2013 Electrical Measurement & Instrumentation 50 98 [7] Li X, Xiao L Z, Liu H B, Zhang Z F, Guo B X, Yu H J and Zong F R 2013 Acta Phys. Sin. 62 147602 (in Chinese) [8] Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401 [9] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644 [10] Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J and Liu J 2021 Acta Phys. Sin 70 147601 (in Chinese) [11] Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105 [12] Pham L M, Sage D L, Stanwix P L, Yeung T K, Glenn D, Trifonov A, Cappellaro P, Hemmer P R, Lukin M D, Park H, Yacoby A and Walsworth R L 2011 New J. Phys. 13 045021 [13] Duan D, Du G X, Kavatamane V K, Arumugam S, Tzeng Y K, Chang H C and Balasubramanian G 2019 Opt. Express 27 6734 [14] Yahata K, Matsuzaki Y, Saito S, Watanabe H and Ishi-Hayase S 2019 Appl. Phys. Lett. 114 022404 [15] Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J and von Borczyskowski C 1997 Science 276 2012 [16] Doherty M W, Michl J, Dolde F, Jakobi I, Neumann P, Manson N B and Wrachtrup J 2014 New J. Phys. 16 063067 [17] Barson M S J, Krausz E, Manson N B and Doherty M W 2019 Nanophotonics 8 1985 [18] Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303 [19] Chen G B, Gu B X, He W H, Guo Z G and Du G X 2020 IEEE J. Quantum Electron. 56 7500106 [20] Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S and Budker D 2010 Phys. Rev. Lett. 104 070801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|