SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
Automatic architecture design for distributed quantum computing |
Ting-Yu Luo(骆挺宇)1, Yu-Zhen Zheng(郑宇真)2,3, Xiang Fu(付祥)2,†, and Yu-Xin Deng(邓玉欣)1,‡ |
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China; 2 Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China; 3 Tianjin Institute of Advanced Technology, Tianjin 300459, China |
|
|
Abstract In distributed quantum computing (DQC), quantum hardware design mainly focuses on providing as many as possible high-quality inter-chip connections. Meanwhile, quantum software tries its best to reduce the required number of remote quantum gates between chips. However, this “hardware first, software follows” methodology may not fully exploit the potential of DQC. Inspired by classical software-hardware co-design, this paper explores the design space of application-specific DQC architectures. More specifically, we propose AutoArch, an automated quantum chip network (QCN) structure design tool. With qubits grouping followed by a customized QCN design, AutoArch can generate a near-optimal DQC architecture suitable for target quantum algorithms. Experimental results show that the DQC architecture generated by AutoArch can outperform other general QCN architectures when executing target quantum algorithms.
|
Received: 12 June 2024
Revised: 08 August 2024
Accepted manuscript online: 18 September 2024
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.-j
|
(Superconducting devices)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFA1009403), the National Natural Science Foundation of China (Grant Nos. 62072176 and 62472175), and the “Digital Silk Road” Shanghai International Joint Lab of Trustworthy Intelligent Software (Grant No. 22510750100). |
Corresponding Authors:
Xiang Fu, Yu-Xin Deng
E-mail: xiangfu@quanta.org.cn;yxdeng@sei.ecnu.edu.cn
|
Cite this article:
Ting-Yu Luo(骆挺宇), Yu-Zhen Zheng(郑宇真), Xiang Fu(付祥), and Yu-Xin Deng(邓玉欣) Automatic architecture design for distributed quantum computing 2024 Chin. Phys. B 33 120302
|
[1] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge university press) [2] Lloyd S 1996 Science 273 1073 [3] Xin T, Wang B X, Li K R, Kong X Y, Wei S J, Wang T, Ruan D and Long G L 2018 Chin. Phys. B 27 020308 [4] Shor P W 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science pp. 124-134 [5] Deutsch D E 1989 Proc. Roy. Soc. London A Math. Phys. Sci. 425 73 [6] Svore K M, Aho A V, Cross A W, Chuang I and Markov I L 2006 Computer 39 74 [7] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457 [8] Fowler A G, Devitt S J and Hollenberg L C 2004 arXiv:0402196v1[quan-ph] [9] Siraichi M Y, Santos V F d, Collange C and Pereira F M Q 2018 Proceedings of the 2018 International Symposium on Code Generation and Optimization pp. 113-125 [10] Kim Y, Eddins A, Anand S, Wei K X, Van Den Berg E, Rosenblatt S, Nayfeh H, Wu Y, Zaletel M, Temme K and Kandala A 2023 Nature 618 500 [11] Kelly J, Barends R, Fowler A, Megrant A, Jeffrey E, White T, Sank D, Mutus J, Campbell B, Chen Y and Chen Z 2015 Nature 519 66 [12] McKay D C, Hincks I, Pritchett E J, Carroll M, Govia L C and Merkel S T 2023 arXiv:2311.05933v1[quant-ph] [13] Castelvecchi D 2023 Nature 624 238 [14] Song C, Xu K, Li H K, Zhang Y R, Zhang X, Liu W X, Guo Q J, Wang Z, Ren W H, Hao J, Feng H, Fan H, Zheng D N, Wang D W and Zhu S Y 2019 Science 365 574 [15] Wu Y L, Bao W S, Cao S R, et al. 2021 Phys. Rev. Lett. 127 180501 [16] Zhu Q, Cao S, Chen F, et al. 2022 Sci. Bull. 67 240 [17] Shi Y H, Liu Y, Zhang Y R, Xiang Z, Huang K, Liu T, Wang Y Y, Zhang J C, Deng C L, Liang G H, Mei Z Y, Li H, Li T M, Ma W G, Liu H T, Chen C T, Liu T, Tian Y, Song X, Zhao S P, Xu K, Zheng D, Nori F and Fan H 2023 Phys. Rev. Lett. 131 080401 [18] Xu H Z, Zhuang W F, Wang Z A, et al. 2024 Chin. Phys. B 33 050302 [19] BAQIS Large-scale quantum cloud computing cluster released with upgraded capability [20] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [21] Zhong Y, Chang H S, Bienfait A, Dumur É, Chou M H, Conner C R, Grebel J, Povey R G, Yan H, Schuster D I and Cleland A N 2021 Nature 590 571 [22] Yan H, Zhong Y, Chang H S, Bienfait A, Chou M H, Conner C R, Dumur É, Grebel J, Povey R G and Cleland A N 2022 Phys. Rev. Lett. 128 080504 [23] Niu J, Zhang L, Liu Y, et al. 2023 Nat. Electron. 6 235 [24] Wu A B, Zhang H Z, Li G G, Shabani A, Xie Y and Ding Y F 2022 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) pp. 1027-1041 [25] Smith K N, Ravi G S, Baker J M and Chong F T 2022 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) pp. 1092-1109 [26] Ang J, Carini G, Chen Y, et al. 2022 arXiv:2212.06167v1[quant-ph] [27] Lin S F, Viszlai J, Smith K N, Ravi G S, Yuan C, Chong F T and Brown B J 2024 Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems 2 216 [28] Zhang H Z, Yin K Y, Wu A B, Shapourian H, Shabani A and Ding Y F 2024 Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems 2 699 [29] Baker J M, Duckering C, Hoover A and Chong F T 2020 Proceedings of the 17th ACM International Conference on Computing Frontiers pp. 98-107 [30] Ferrari D, Cacciapuoti A S, Amoretti M and Caleffi M 2021 IEEE Trans. Quantum Eng. 2 4100720 [31] Wu A B, Ding Y F and Li A 2023 Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture pp. 479- 493 [32] Nikahd E, Mohammadzadeh N, Sedighi M and Zamani M S 2021 Phys. Scr. 96 035102 [33] Dadkhah D, Zomorodi M, Hosseini S E, Plawiak P and Zhou X 2022 IEEE Access 10 70329 [34] Andres-Martinez P and Heunen C 2019 Phys. Rev. A 100 032308 [35] Daei O, Navi K and Zomorodi-Moghadam M 2020 Int. J. Theor. Phys. 59 3804 [36] Davarzani Z, Zomorodi-Moghadam M, Houshmand M and NouriBaygi M 2020 Quantum Information Processing 19 360 [37] Cuomo D, Caleffi M and Cacciapuoti A S 2020 IET Quantum Commun. 1 3 [38] Wootters W K and Zurek W H 1982 Nature 299 802 [39] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [40] Li G S, Ding Y F and Xie Y 2019 Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems pp. 1001-1014 [41] Zulehner A, Paler A and Wille R 2018 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38 1226 [42] Murali P, Baker J M, Javadi-Abhari A, Chong F T and Martonosi M 2019 Proceedings of the twenty-fourth international conference on architectural support for programming languages and operating systems pp. 1015-1029 [43] Tannu S S and Qureshi M K 2019 Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems pp. 987-999 [44] Lao L L and Browne D E 2022 Proceedings of the 49th Annual International Symposium on Computer Architecture pp. 351-365 [45] Deng H W, Zhang Y and Li Q X 2020 2020 57th ACM/IEEE Design Automation Conference (DAC) pp. 1-6 [46] Glover F 1989 ORSA Journal on Computing 1 190 [47] Glover F 1990 ORSA Journal on Computing 2 4 [48] Lawler E L 1963 Management Science 9 586 [49] Sahni S and Gonzalez T 1976 Journal of the ACM (JACM) 23 555 [50] Graham R L 1995 Handbook of combinatorics (Elsevier) [51] Floyd R W 1962 Communications of the ACM 5 345 [52] Li A, Stein S, Krishnamoorthy S and Ang J 2023 ACM Transactions on Quantum Computing 4 1 [53] Quetschlich N, Burgholzer L and Wille R 2023 Quantum 7 1062 [54] IBM Ibm quantum experience devices |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|