Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120302    DOI: 10.1088/1674-1056/accb45
GENERAL Prev   Next  

Deep learning framework for time series classification based on multiple imaging and hybrid quantum neural networks

Jianshe Xie(谢建设) and Yumin Dong(董玉民)
College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China
Abstract  Time series classification (TSC) has attracted a lot of attention for time series data mining tasks and has been applied in various fields. With the success of deep learning (DL) in computer vision recognition, people are starting to use deep learning to tackle TSC tasks. Quantum neural networks (QNN) have recently demonstrated their superiority over traditional machine learning in methods such as image processing and natural language processing, but research using quantum neural networks to handle TSC tasks has not received enough attention. Therefore, we proposed a learning framework based on multiple imaging and hybrid QNN (MIHQNN) for TSC tasks. We investigate the possibility of converting 1D time series to 2D images and classifying the converted images using hybrid QNN. We explored the differences between MIHQNN based on single time series imaging and MIHQNN based on the fusion of multiple time series imaging. Four quantum circuits were also selected and designed to study the impact of quantum circuits on TSC tasks. We tested our method on several standard datasets and achieved significant results compared to several current TSC methods, demonstrating the effectiveness of MIHQNN. This research highlights the potential of applying quantum computing to TSC and provides the theoretical and experimental background for future research.
Keywords:  quantum neural networks      time series classification      time-series images      feature fusion  
Received:  20 January 2023      Revised:  19 March 2023      Accepted manuscript online:  07 April 2023
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61772295 and 61572270), the PHD foundation of Chongqing Normal University (Grant No.19XLB003), and Chongqing Technology Foresight and Institutional Innovation Project (Grant No.cstc2021jsyj-yzysbAX0011).
Corresponding Authors:  Yumin Dong     E-mail:  dym@cqnu.edu.cn

Cite this article: 

Jianshe Xie(谢建设) and Yumin Dong(董玉民) Deep learning framework for time series classification based on multiple imaging and hybrid quantum neural networks 2023 Chin. Phys. B 32 120302

[1] Paparrizos J and Gravano L 2017 ACM Transactions on Database Systems (TODS) 42 1
[2] Lines J and Bagnall A 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar November 26-29, 2019, Xiamen, China, 1
[4] Geler Z, Kurbalija V, Ivanovi M and Radovanovi M 2020 International Conference on Innovations in Intelligent Systems and Applications (INISTA) August 24--26, 2020, Novi Sad, Serbia, 1
[5] Buza K, Nanopoulos A and Schmidt-Thieme L 2010 13th IEEE International Conference on Computational Science and Engineering December 11--13, Hong Kong, China, 48
[6] Morchen F, Ultsch A, Thies M and Lohken I 2005 IEEE Transactions on Audio, Speech, and Language Processing 14 81
[7] Lin J, Keogh E, Wei L and Lonardi S 2007 Data Mining and Knowledge Discovery 15 107
[8] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195
[9] Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
[10] Li Z, Liu X, Xu N and Du J 2015 Phys. Rev. Lett. 114 140504
[11] Wiebe N, Kapoor A and Svore K M 2014 arXiv:1412.3489
[12] Rebentrost P, Bromley T R, Weedbrook C and Lloyd S 2018 Phys. Rev. A 98 042308
[13] Benedetti M, Realpe-Gómez J and Perdomo-Ortiz A 2018 Quantum Science and Technology 3 034007
[14] Cong I, Choi S and Lukin M D 2019 Nat. Phys. 15 1273
[15] Steinbrecher G R, Olson J P, Englund D and Carolan J 2019 npj Quantum Information 5 60
[16] Levine Y, Sharir O, Cohen N and Shashua A 2019 Phys. Rev. Lett. 122 065301
[17] Yang Z and Zhang X 2020 New J. Phys. 22 033041
[18] Amin M H, Andriyash E, Rolfe J Kulchytskyy B and Melko R 2018 Phys. Rev. X 8 021050
[19] Kieferová M and Wiebe N 2017 Phys. Rev. A 96 062327
[20] Lloyd S and Weedbrook C 2018 Phys. Rev. Lett. 121 040502
[21] Hu L, Wu S H, Cai W, Ma Y, Mu X, Xu Y, Wang H, Song Y, Deng D L and Zou C L 2019 Sci. Adv. 5 eaav2761
[22] Dallaire-Demers P L and Killoran N 2018 Phys. Rev. A 98 012324
[23] Cui Z, Chen W and Chen Y 2016 arXiv:1603.06995
[24] Wang Z, Yan W and Oates T 2017 International Joint Conference on Neural Networks May 14-19, 2017, Anchorage, Alaska, USA p. 1578
[25] Wang Z and Oates T 2015 arXiv:1506.00327
[26] Hatami N, Gavet Y and Debayle J 2019 Neurocomputing 359 384
[28] Karim F, Majumdar S, Darabi H and Chen S 2017 IEEE Access 6 1661
[29] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[30] Boixo S, Isakov S V, Smelyanskiy V N, et al. 2018 Nat. Phys. 14 595
[31] Kerenidis I, Landman J and Prakash A 2019 arXiv:1911.01117
[32] Houssein E H, Abohashima Z, Elhoseny M and Mohamed W M 2022 Journal of Computational Design and Engineering 9 343
[33] Mari A, Bromley T R, Izaac J, Schuld M and Killoran N 2020 Quantum 4 340
[34] Krizhevsky A, Sutskever I and Hinton G E 2017 Communications of the ACM 60 84
[35] Huang G, Liu S, Van der Maaten L and Weinberger K Q 2018 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 18--21, 2018, Salt Lake City, USA, p. 2752
[36] Simonyan K and Zisserman A 2014 arXiv:1409.1556
[37] Eckmann J P, Kamphorst S O and Ruelle D 1995 World Scientific Series on Nonlinear Science Series A 16 441
[38] Wang Z and Oates T 2015 Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25--30, 2015, Austin, Texas USA 6 1661
[39] Dau H A, Bagnall A, Kamgar K, et al 2019 IEEE/CAA Journal of Automatica Sinica 6 1293
[40] Nielsen M A and Chuang I 2002 Quantum Am. J. Phys. 70 558
[41] Du Y, Huang T, You S, Hsieh M H and Tao D 2022 npj Quantum Information 8 62
[42] Hubregtsen T, Pichlmeier J, Stecher P and Bertels K 2021 Quantum Machine Intelligence 3 1
[43] Schuld M 2021 arXiv:2101.11020
[44] Havlíek V, Córcoles A D, Temme K, Harrow A W, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209
[45] Huang H Y, Broughton M, Mohseni M, Babbush R, Boixo S, Neven H, and McClean J R 2021 Nat. Commun. 12 2631
[1] Sharing quantum nonlocality in the noisy scenario
Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎). Chin. Phys. B, 2024, 33(1): 010302.
[2] Complete population transfer between next-adjacent energy levels of a transmon qudit
Yingshan Zhang(张颖珊), Pei Liu(刘培), Jingning Zhang(张静宁), Ruixia Wang(王睿侠), Weiyang Liu(刘伟洋), Jiaxiu Han(韩佳秀), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2023, 32(12): 120306.
[3] Parameterized monogamy and polygamy relations of multipartite entanglement
Zhong-Xi Shen(沈中喜), Ke-Ke Wang(王珂珂), and Shao-Ming Fei(费少明). Chin. Phys. B, 2023, 32(12): 120303.
[4] Fast and perfect state transfer in superconducting circuit with tunable coupler
Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕), Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(11): 110305.
[5] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[6] Deterministic remote preparation of multi-qubit equatorial states through dissipative channels
Liu-Yong Cheng(程留永), Shi-Feng Zhang(张世凤), Zuan Meng(孟钻), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2023, 32(11): 110307.
[7] Visualizing and witnessing first-order coherence, Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明), Min Kong(孔敏), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(10): 100305.
[8] Digital holographic imaging via direct quantum wavefunction reconstruction
Meng-Jun Hu(胡孟军) and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2023, 32(10): 100312.
[9] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[10] Non-Gaussian approach: Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation
Hao Wu(吴昊), Hang Zhang(张航), Yiwu Zhu(朱益武), Gaofeng Luo(罗高峰), Zhiyue Zuo(左峙岳), Xinchao Ruan(阮新朝), and Ying Guo(郭迎). Chin. Phys. B, 2023, 32(10): 100311.
[11] Long-range interacting Stark many-body probes with super-Heisenberg precision
Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat. Chin. Phys. B, 2023, 32(10): 100313.
[12] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[13] Geometric discord of tripartite quantum systems
Chunhe Xiong(熊春河), Wentao Qi(齐文韬), Maoke Miao(缪茂可), and Minghui Wu(吴明晖). Chin. Phys. B, 2023, 32(10): 100301.
[14] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[15] Approximate error correction scheme for three-dimensional surface codes based reinforcement learning
Ying-Jie Qu(曲英杰), Zhao Chen(陈钊), Wei-Jie Wang(王伟杰), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2023, 32(10): 100307.
No Suggested Reading articles found!