Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024501    DOI: 10.1088/1674-1056/ad117b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical simulation for the initial state of avalanche in polydisperse particle systems

Ren Han(韩韧), Ting Li(李亭), Zhipeng Chi(迟志鹏), Hui Yang(杨晖), and Ran Li(李然)
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle systems. Nucleation and propagation processes are illustrated for pentadisperse and triadisperse particle systems, respectively. In these processes, particles involved in the avalanche grow slowly in the early stage and explosively in the later stage, which is clearly different from the continuous and steady growth trend in the monodisperse system. By examining the avalanche propagation, the number growth of particles involved in the avalanche and the slope of the number growth, the initial state can be divided into three stages: T1 (nucleation stage), T2 (propagation stage), T3 (overall avalanche stage). We focus on the characteristics of the avalanche in the T2 stage, and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse systems. We also consider the distribution characteristics of the average coordination number and average velocity for the moving particles. The results support that the polydisperse particle systems are more stable in the T2 stage.
Keywords:  avalanche      initial state      polydisperse particle systems      propagation  
Received:  13 October 2023      Revised:  21 November 2023      Accepted manuscript online:  01 December 2023
PACS:  45.70.Ht (Avalanches)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  45.70.-n (Granular systems)  
Fund: Project supported by the Qingdao National Laboratory for Marine Science and Technology (Grant No. 2015ASKJ01) and the National Natural Science Foundation of China (Grant Nos. 11972212, 12072200, and 12002213).
Corresponding Authors:  Ran Li     E-mail:  ran89@usst.edu.cn

Cite this article: 

Ren Han(韩韧), Ting Li(李亭), Zhipeng Chi(迟志鹏), Hui Yang(杨晖), and Ran Li(李然) Numerical simulation for the initial state of avalanche in polydisperse particle systems 2024 Chin. Phys. B 33 024501

[1] Rajchenbach J 2001 Phys. Rev. Lett. 88 014301
[2] Marteau E and Andrade J E 2018 Acta Geotech. 13 549
[3] Lo W L, Yang F L, Chen C S and Hsieh S H 2015 Granul. Matter 17 717
[4] Yang S L, Wang H, Wei Y G, Hu J H and Chew J W 2020 Powder Technol. 361 930
[5] Han R, Xin Y Y, Wang Z, Li R and Chen Q 2021 Powder Technol. 394 775
[6] Han R, Wang Z, Chen Q, Yang H and Li R 2022 Adv. Powder Technol. 33 103872
[7] Han R, Feng J Y, Zhang Y F, Yang H, Zivkovic V and Li R 2021 Powder Technol. 380 199
[8] Chen Q, Yang H, Li R, Xiu W Z and Zivkovic V 2019 Powder Technol. 364 1039
[9] Xiao X W, Tan Y Q, Zhang H, Deng R and Jiang S Q 2017 Powder Technol. 314 182
[10] Yu M X, Zhang H J and Guo J H 2022 Powder Technol. 396 626
[11] Alchikh-Sulaiman B, Alian M, Ein-Mozaffari F, Lohi A and Upreti S R 2016 Particuology 25 133
[12] Sylvain C D P, Raphael F, Philippe G, Bernard P and Marc R 2005 Phys. Rev. Lett. 94 048003
[13] Li R, Yang H, Zheng G and Sun Q C 2018 Powder Technol. 326 322
[14] Mellmann J 2001 Powder Technol. 118 251
[15] Santos D A, Barrozo M A S, Duarte C R, Weigler F and Mellmann J 2016 Adv. Powder Technol. 27 692
[16] Alberto D R and Francesco P D M 2004 Chem. Eng. Sci. 59 525
[17] Wei H, Zhao Y H, Zhang J, Saxén H and Yu Y W 2017 Adv. Powder Technol. 28 2482
[18] Rajchenbach J Y 2010 J. Phys. Condens. Matter 17 S2731
[19] Santos D A, Duarte C R and Barrozo M A S 2016 Powder Technol. 294 1
[20] Sepúlveda N, Krstulovic G and Rica S 2005 Physica A 356 178
[21] Zaitsev V Y, Richard P, Delannay R, Tournat V and Gusev V E 2008 Europhys. Lett. 83 64003
[22] Bak P, Tang C and Wiesenfeld K 1987 Phys. Rev. Lett. 59 381
[1] Attosecond ionization time delays in strong-field physics
Yongzhe Ma(马永哲), Hongcheng Ni(倪宏程), and Jian Wu(吴健). Chin. Phys. B, 2024, 33(1): 013201.
[2] Planar InAlAs/InGaAs avalanche photodiode with 360 GHz gain×bandwidth product
Shuai Wang(王帅), Han Ye(叶焓), Li-Yan Geng(耿立妍), Fan Xiao(肖帆), Yi-Miao Chu(褚艺渺), Yu Zheng(郑煜), and Qin Han(韩勤). Chin. Phys. B, 2023, 32(9): 098507.
[3] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[4] Initial-state dependence of phase behaviors in a dense active system
Lu Chen(陈璐), Bokai Zhang(张博凯), and Z. C. Tu(涂展春). Chin. Phys. B, 2023, 32(8): 086401.
[5] An improved ISR-WV rumor propagation model based on multichannels with time delay and pulse vaccination
Yafang Dong(董雅芳), Liangán Huo(霍良安), Xiaoxiao Xie(谢笑笑), and Ming Li(李明). Chin. Phys. B, 2023, 32(7): 070205.
[6] Model and data of optically controlled tunable capacitor in silicon single-photon avalanche diode
Mei-Ling Zeng(曾美玲), Yang Wang(汪洋), Xiang-Liang Jin(金湘亮), Yan Peng(彭艳), and Jun Luo(罗均). Chin. Phys. B, 2023, 32(7): 078502.
[7] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
[8] Stability and optimal control for delayed rumor-spreading model with nonlinear incidence over heterogeneous networks
Xupeng Luo(罗续鹏), Haijun Jiang(蒋海军), Shanshan Chen(陈珊珊), and Jiarong Li(李佳容). Chin. Phys. B, 2023, 32(5): 058702.
[9] Three-dimensional acoustic propagation model for shallow waters based on an indirect boundary element method
Edmundo F. Lavia, Juan D. Gonzalez, and Silvia Blanc. Chin. Phys. B, 2023, 32(5): 054301.
[10] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[11] Phase-field-crystal simulation of nano-single crystal microcrack propagation under different orientation angles
Dunwei Peng(彭敦维), Yunpeng Zhang(张云鹏), Xiaolin Tian(田晓林), Hua Hou(侯华), and Yuhong Zhao(赵宇宏). Chin. Phys. B, 2023, 32(4): 044601.
[12] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[13] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[14] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[15] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
No Suggested Reading articles found!