Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120508    DOI: 10.1088/1674-1056/ac3226
GENERAL Prev   Next  

Transition to chaos in lid-driven square cavity flow

Tao Wang(王涛)1 and Tiegang Liu(刘铁钢)2,†
1 School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China;
2 LMIB and School of Mathematical Sciences, Beihang University, Beijing 100191, China
Abstract  To date, there are very few studies on the transition beyond second Hopf bifurcation in a lid-driven square cavity, due to the difficulties in theoretical analysis and numerical simulations. In this paper, we study the characteristics of the third Hopf bifurcation in a driven square cavity by applying a consistent fourth-order compact finite difference scheme rectently developed by us. We numerically identify the critical Reynolds number of the third Hopf bifurcation located in the interval of (13944.7021,13946.5333) by the method of bisection. Through Fourier analysis, it is discovered that the flow becomes chaotic with a characteristic of period-doubling bifurcation when the Reynolds number is beyond the third bifurcation critical interval. Nonlinear time series analysis further ascertains the flow chaotic behaviors via the phase diagram, Kolmogorov entropy and maximal Lyapunov exponent. The phase diagram changes interestingly from a closed curve with self-intersection to an unclosed curve and the attractor eventually becomes strange when the flow becomes chaotic.
Keywords:  unsteady lid-driven square cavity flows      chaos      time series analysis      third Hopf bifurcation  
Received:  26 August 2021      Revised:  08 October 2021      Accepted manuscript online:  22 October 2021
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.70.Jk (Critical point phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12162001), the Natural Science Foundation of Ningxia (Grant No. 2019AAC03129), and the Construction Project of First-Class Disciplines in Ningxia Higher Education (Grant No. NXYLXK2017B09).
Corresponding Authors:  Tiegang Liu     E-mail:  liutg@buaa.edu.cn

Cite this article: 

Tao Wang(王涛) and Tiegang Liu(刘铁钢) Transition to chaos in lid-driven square cavity flow 2021 Chin. Phys. B 30 120508

[1] Ghia U, Ghia K and Shin C T 1982 J. Comput. Phys. 48 387
[2] Orlandi O 1987 Comput. Fluids 15 137
[3] Hou S, Zou Q, Chen S, Doonlen G and Cogely A 1995 J. Comput. Phys. 118 329
[4] Erturk E 2006 Int. J. Numer. Meth. Fluids 50 421
[5] Erturk E 2009 Int. J. Numer. Meth. Fluids 60 275
[6] Nuriev A N, Egorov A G and Zaitseva O N 2016 Fluid Dyn. Res 48 61405
[7] Poliashenko M and Aidun C K 1995 J. Comput. Phys. 121 246
[8] Boppana V B L and Gajjar J S B 2010 Int. J. Numer. Meth. Fluids 62 827
[9] Bruneau C H and Saad M 2006 Comput. Fluids 35 326
[10] Shen J 1991 J. Comput. Phys. 95 228
[11] Fortin A, Jardak M, Gervais J and Pierre R 1997 Int. J. Numer. Meth. Fluids 24 1185
[12] Auteri F, Parolini N and Quartapelle L 2002 J. Comput. Phys. 183 1
[13] Wang T, Liu T G and Wang Z 2020 Chin. Phys. B 29 030503
[14] Gupta M M 1998 Int. J. Numer. Meth. Fluids 28 737
[15] Wang T and Liu T G 2019 Numer. Math.:Theory, Methods and Applications 12 312
[16] Shu C W and Osher S 1988 J. Comput. Phys. 77 439
[17] Launay G, Cambonie T, Henry D, Pothérat A and Botton V 1988 Phys. Rev. Fluids 4 044401
[18] Newhouse S, Ruelle D and Takens F 1978 Comm. Math. Phys. 64 35
[19] Feigenbaum M J 1979 Phys. Lett. A 74 375
[20] Feigenbaum M J 1980 Comm. Math. Phys. 77 65
[21] Pomeau Y and Manneville P 1980 Comm. Math. Phys. 74 189
[22] McCauley J L 1994 Chaos, Dynamics and Fractals:An Algorithmic Approach to Deterministic Chaos (1st edn.) (Cambridge:Cambridge University Press) pp. 1-22
[23] Ding P F, Feng X Y and Wu C M 2020 Chin. Phys. B 29 108202
[24] Verstappen R, Wissink J G and Veldman A E P 1993 Appl. Sci. Res. 51 377
[25] Gao F, Hu D N and Tong H Q 2018 Acta Phys. Sin. 67 150501 (in Chinese)
[26] Zhang L P, Liu Y and Wei Z C 2020 Chin. Phys. B 29 060501
[27] Packard N H 1980 Phys. Lett. A 45 712
[28] Takens F 1981 Lect. Notes Math. 898 366
[29] Abarbanel H D I, Brown R, Sidorowich J J and Tsimring L S 1993 Rev. Mod. Phys. 65 1331
[30] Grassberger P and Procaccia I 1983 Phys. Rev. A 28 2591
[31] Rosenstein M T, Collins J J and De Luca C J 1993 Physica D 65 117
[32] Wolf A, Swift J, Harry Swinney L and Vastano J 1985 Physica D 16 285
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!