Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060703    DOI: 10.1088/1674-1056/ad401b
GENERAL Prev   Next  

Performance optimization of a SERF atomic magnetometer based on flat-top light beam

Ziqi Yuan(袁子琪)1, Junjian Tang(唐钧剑)1,2,†, Shudong Lin(林树东)1, and Yueyang Zhai(翟跃阳)1,2,3
1 Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
2 School of Physics, Beihang University, Beijing 100191, China;
3 Hefei National Laboratory, Hefei 230088, China
Abstract  We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spin-exchange relaxation-free (SERF) atomic magnetometers (AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped (FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1Hz-30Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.
Keywords:  atomic magnetometer (AM)      spin-exchange relaxation-free (SERF)      flat-top light beam      performance optimization  
Received:  04 March 2024      Revised:  12 April 2024      Accepted manuscript online:  18 April 2024
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  33.80.-b (Photon interactions with molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62303029), the China Postdoctoral Science Foundation (Grant No. 2022M720364), and the Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0300500 and 2021ZD0300503).
Corresponding Authors:  Junjian Tang     E-mail:  tangjunjian@buaa.edu.cn

Cite this article: 

Ziqi Yuan(袁子琪), Junjian Tang(唐钧剑), Shudong Lin(林树东), and Yueyang Zhai(翟跃阳) Performance optimization of a SERF atomic magnetometer based on flat-top light beam 2024 Chin. Phys. B 33 060703

[1] Aslam N, Zhou H Y, Urbach E K, Turner M J, Walsworth R L, Lukin M D and Park H 2023 Nat. Rev. Phys. 5 157
[2] Shah V, Knappe S, Schwindt P D D and Kitching J 2007 Nat. Photonics 1 649
[3] Jiang M, Su H W, Garcon A, Peng X H and Budker D 2021 Nat. Phys. 17 1402
[4] Qu W Z, Jin S C, Sun J, Jiang L, Wen J M and Xiao Y 2020 Nat. Commun. 11 1752
[5] Zhang R, Xiao W, Ding Y D, Feng Y L, Peng X, Shen L, Sun C X, Wu T, Wu Y L, Yang Y C, Zheng Z Y, Zhang X Z, Chen J B and Guo H 2020 Sci. Adv. 6 eaba8792
[6] Lin S D, Tang J J, Yuan Z Q, Huang B Y, Wang Y H and Zhai Y Y 2023 Appl. Phys. Lett. 123 194001
[7] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[8] Tang J J, Zhai Y Y, Zhou B Q, Han B C and Liu G 2021 IEEE Trans. Instrum. Meas. 70 1504808
[9] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muñoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R and Brooks M J 2018 Nature 555 657
[10] Yuan Z Q, Liu Y, Xiang M, Gao Y, Suo Y C, Ye M and Zhai Y Y 2023 Opt. Laser Technol. 164 109534
[11] Nardelli N V, Perry A R, Krzyzewski S P and Knappe S A 2020 EPJ Quantum Technol. 7 11
[12] Guo Q Q, Hu T, Feng X Y, Zhang M K, Chen C Q, Zhang X, Yao Z K, Xu J Y, Wang Q and Fu F Y 2023 Chin. Phys. B 32 040702
[13] Boto E, Seedat Z A, Holmes N, Leggett J, Hill R M, Roberts G, Shah V, Fromhold T M, Mullinger K J, Tierney T M, Barnes G R, Bowtell R and Brookes M J 2019 NeuroImage 201 116099
[14] Yuan Z Q, Lin S D, Liu Y, Tang J J, Long T Y and Zhai Y Y 2024 iScience 27 109250
[15] Safronova M S, Budker D, DeMille D and Kimball D F J 2018 Rev. Mod. Phys. 90 025008
[16] Brown J M, Smullin S J, Kornack T W and Romalis M V 2010 Phys. Rev. Lett. 105 151604
[17] Tang J J, Liu Y, Wang Y X, Zhou B Q, Han B C, Zhai Y Y and Liu G 2022 Appl. Phys. Lett. 120 084001
[18] Lin S D, Tang J J, Yuan Z Q, Cao L and Zhai Y Y 2023 IEEE Trans. Instrum. Meas. 73 1500410
[19] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[20] Wang Y X, Jin G, Tang J J, Zhou W Y, Han B C, Zhou B Q and Shi T 2022 Opt. Express 30 336
[21] Zhang S W, Lu J X, Ye M, Zhou Y, Yin K F, Lu F, Yan Y G and Zhai Y Y 2022 IEEE Trans. Instrum. Meas. 71 1
[22] Tang J J, Zhai Y Y, Cao L, Zhang Y H, Li L, Zhao B B, Zhou B Q, Liu G and Han B C 2021 Opt. Express 29 15641
[23] Xing B Z, Sun C, Liu Z A, Zhao J P, Lu J X, Han B C and Ding M 2021 Opt. Express 29 5055
[24] Cao L, Tang J J, Zhang Y H, Yuan Z Q, Li J J, Zhai Y Y and Liu Y 2023 Sens. Actuator A Phys. 353 114247
[25] Zhao J P, Liu G, Lu J X, Ding M, Ma Y N, Ji J, Yang K, Ma D Y, Xing B Z, Zhang N, Sun C and Han B C 2020 Meas. Sci. Technol. 32 035902
[26] Yao H, Maddox B and Renzoni F 2023 Opt. Express 31 509
[27] Chen X, Fang X J, Ma D Y, Liu Y, Cao L and Zhai Y Y 2022 Appl. Opt. 61 C55
[28] Wang Z, Jing M Y, Zhang P, Yuan S X, Zhang H, Zhang L J, Xiao L T and Jia S T 2023 Opt. Express 31 19909
[29] Ćuk S M, Radonjić M, Krmpot A J, Nikolić S N, Grujić Z D and Jelenković B M 2010 Phys. Rev. A 82 063802
[30] Wang B W, Xiu L W, Xiang T, Li G and Zhang H 2023 Acta Opt. Sin. 43 246 (in Chinese)
[31] Ma H T, Liu Z J, Zhou P, Wang X L, Ma Y X and Xu X J 2010 J. Opt. 12 045704
[32] Trypogeorgos D, Harte T, Bonnin A and Foot C 2013 Opt. Express 21 24837
[33] Zheng Y C, Wu G, Chen Y S, Lu Y L, Li C, Wan G B and Yin R X 2023 Rev. Sci. Instrum. 94 095010
[34] Zhang X W, Zhang X J, Duan Y, Zhang L D and Ni X J 2023 Nat. Commun. 14 8374
[35] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[1] TIAN REN-HE (田人和), MANFRED FINK. THE BEAM TEMPERATURE AND ENERGY BROADENING OF A CHARGED-PARTICLE BEAM IN AN AXIALLY SYMMETRIC MAGNETIC FIELD[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 86 -93 .
[2] LUO ZHEN-FEI (罗振飞), XU ZHI-ZHAN (徐至展), ZHOU JIAO-YANG (周骄阳). ATOMIC-COHERENCE-INDUCED ENHANCEMENT OF REFRACTIVE INDEX[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(4): 252 -259 .
[3] JIANG SHENG-RUI (蒋生蕊), PENG DONG-LIANG (彭栋梁). STUDIES ON INFRARED AND PHOTOLUMINESCENCE PROPERTIES OF CdIn2O4 FILMS DEPOSITED BY RF REACTIVE SPUTTERING[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(6): 464 -469 .
[4] ZOU BING-SUO (邹炳锁), ZHANG GUI-LAN (张桂兰), TANG GUO-QING (汤国庆), CHEN WEN-JU (陈文驹). X-RAY PHOTOELECTRON EMISSION STRUCTURES OF CuO NANOPARTICLES[J]. Acta Physica Sinica (Overseas Edition), 1994, 3(4): 303 -308 .
[5] LIU JIE (刘杰), Chen Shi-gang (陈式刚), Bao De-hai (鲍德海). PHOTOIONIZATION IN AN INTENSE LASER FIELD[J]. Acta Physica Sinica (Overseas Edition), 1995, 4(12): 881 -888 .
[6] CHEN JI-ZHOU (陈济舟), WANG JUN-QIAO (王俊桥), HAN FU-TIAN (韩甫田). MORPHOLOGY-STRUCTURE OF ORIENTED NONCRYSTALLINE POLYESTER STUDIED BY TWO-DIMENSIONAL WIDE ANGLE X-RAY SCATTERING[J]. Acta Physica Sinica (Overseas Edition), 1995, 4(3): 204 -212 .
[7] SHI JUN-JIE (史俊杰). ELECTRON-INTERFACE PHONON SCATTERING IN ASYMMETRIC SEMICONDUCTOR QUANTUM WELL STRUCTURES[J]. Acta Physica Sinica (Overseas Edition), 1995, 4(5): 356 -364 .
[8] MI XIANG-DONG (米向东), YANG ZHAN-RU (杨展如). EXACT RESULTS FOR A SYMMETRIC 27-VERTEX MODEL[J]. Acta Physica Sinica (Overseas Edition), 1996, 5(9): 646 -653 .
[9] WEI WEI (魏渭), GUO GUANG-CAN (郭光灿). THE DISENTANGLED-STATE IN THE TWO-PHOTON JAYNES-CUMMING MODEL WITH A KERR-LIKE MEDIUM[J]. Acta Physica Sinica (Overseas Edition), 1997, 6(10): 737 -745 .
[10] WANG LEI (王雷), WANG BING-HONG (汪秉宏), HUI PAK-MING (许伯铭). STRICT DERIVATION OF MEAN FIELD EQUATION FOR ONE-DIMENSIONAL TRAFFIC FLOW MODEL[J]. Acta Physica Sinica (Overseas Edition), 1997, 6(11): 829 -836 .