COMPUTATIONAL PROGRAMS FOR PHYSICS |
Prev
Next
|
|
|
A hybrid method integrating Green's function Monte Carlo and projected entangled pair states |
He-Yu Lin(林赫羽)1,2, Rong-Qiang He(贺荣强)1,2,†, Yibin Guo (郭奕斌)3,‡, and Zhong-Yi Lu(卢仲毅)1,2,4,§ |
1 Department of Physics, Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China; 3 CQTA, Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany; 4 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract This paper introduces a hybrid approach combining Green's function Monte Carlo (GFMC) method with projected entangled pair state (PEPS) ansatz. This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC. By leveraging PEPS's proficiency in capturing quantum state entanglement and GFMC's efficient parallel architecture, the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems. As a benchmark, we applied this approach to study the frustrated $J_1$-$J_2$ Heisenberg model on a square lattice with periodic boundary conditions (PBCs). Compared with other numerical methods, our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy. This paper provides systematic and comprehensive discussion of the approach of our previous work [Phys. Rev. B 109 235133 (2024)].
|
Received: 26 July 2024
Revised: 28 September 2024
Accepted manuscript online: 09 October 2024
|
PACS:
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
02.70.Ss
|
(Quantum Monte Carlo methods)
|
|
05.10.Cc
|
(Renormalization group methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11934020) and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302402). |
Corresponding Authors:
Rong-Qiang He, Yibin Guo, Zhong-Yi Lu
E-mail: rqhe@ruc.edu.cn;yibin.guo@desy.de;zlu@ruc.edu.cn
|
Cite this article:
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), Yibin Guo (郭奕斌), and Zhong-Yi Lu(卢仲毅) A hybrid method integrating Green's function Monte Carlo and projected entangled pair states 2024 Chin. Phys. B 33 117504
|
[1] Lin H Y, Guo Y, He R Q, Xie Z Y and Lu Z Y 2024 Phys. Rev. B 109 235133 [2] Trivedi N and Ceperley D M 1989 Phys. Rev. B 40 2737 [3] Trivedi N and Ceperley D M 1990 Phys. Rev. B 41 4552 [4] Verstraete F, Murg V and Cirac J I 2008 Adv. Phys. 57 143 [5] Or′us R 2019 Nature Reviews Physics 1 538 [6] Cirac J I, Pérez-García D, Schuch N and Verstraete F 2021 Rev. Mod. Phys. 93 045003 [7] Bañuls M C 2023 Annu. Rev. Condens. Matter Phys. 14 173 [8] Xiang T 2023 Density Matrix and Tensor Network Renormalization (Cambridge University Press) [9] Nightingale M P and Umrigar C J 1998 Quantum Monte Carlo methods in physics and chemistry (Springer Science & Business Media) [10] Becca F and Sorella S 2017 Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press) p. 167 [11] ten Haaf D F B, van Bemmel H J M, van Leeuwen J M J, van Saarloos W and Ceperley D M 1995 Phys. Rev. B 51 13039 [12] Sorella S and Capriotti L 2000 Phys. Rev. B 61 2599 [13] Reynolds P J, Ceperley D M, Alder B J and Lester W A 1982 The Journal of Chemical Physics 77 5593 [14] Montangero S 2018 Introduction to Tensor Network Methods (Springer Nature) Chaps. 5 and 6 [15] Verstraete F and Cirac J I arXiv:cond-mat/0407066 [16] Or′us R 2014 Ann. Phys. 349 117 [17] Xie Z Y, Liao H J, Huang R Z, Xie H D, Chen J, Liu Z Y and Xiang T 2017 Phys. Rev. B 96 045128 [18] Yang L P, Fu Y F, Xie Z Y and Xiang T 2023 Phys. Rev. B 107 165127 [19] Or′us R 2014 Eur. Phys. J. B 87 280 [20] du Croo de Jongh M S L, van Leeuwen J M J and van Saarloos W 2000 Phys. Rev. B 62 14844 [21] Clark B K and Changlani H J arXiv:1404.2296 [22] Wouters S, Verstichel B, Van Neck D and Kin-Lic Chan G 2014 Phys. Rev. B 90 045104 [23] Qin M P 2020 Phys. Rev. B 102 125143 [24] Lin H Y, He R Q and Lu Z Y 2022 Chin. Phys. B 31 080203 [25] Zhang G M, Hu H and Yu L 2003 Phys. Rev. Lett. 91 067201 [26] Mezzacapo F 2012 Phys. Rev. B 86 045115 [27] Jiang H C, Yao H and Balents L 2012 Phys. Rev. B 86 024424 [28] Hu W J, Becca F, Parola A and Sorella S 2013 Phys. Rev. B 88 060402 [29] Morita S, Kaneko R and Imada M 2015 J. Phys. Soc. Jpn. 84 024720 [30] Wang L and Sandvik A W 2018 Phys. Rev. Lett. 121 107202 [31] Ferrari F and Becca F 2020 Phys. Rev. B 102 014417 [32] Liu W Y, Gong S S, Li Y B, Poilblanc D, Chen W Q and Gu Z C 2022 Science Bulletin 67 1034 [33] Wang L, Poilblanc D, Gu Z C, Wen X G and Verstraete F 2013 Phys. Rev. Lett. 111 037202 [34] Liu W Y, Dong S, Wang C, Han Y, An H, Guo G C and He L 2018 Phys. Rev. B 98 241109 [35] Schulz H J, Ziman T A L and Poilblanc D 1996 Journal de Physique I 6 675 [36] Choo K, Neupert T and Carleo G 2019 Phys. Rev. B 100 125124 [37] Nomura Y and Imada M 2021 Phys. Rev. X 11 031034 [38] Anderson J B 1975 The Journal of Chemical Physics 63 1499 [39] Verstraete F, Porras D and Cirac J I 2004 Phys. Rev. Lett. 93 227205 [40] Liao H J, Liu J G, Wang L and Xiang T 2019 Phys. Rev. X 9 031041 [41] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Phys. Rev. B 86 045139 [42] Buonaura M C and Sorella S 1998 Phys. Rev. B 57 11446 [43] Sandvik A W 1997 Phys. Rev. B 56 11678 [44] Néel L 1936 Ann. Phys. 11 232 [45] Néel L 1932 J. Phys. Radium 3 160 [46] Singh R R P, Zheng W H, Hamer C J and Oitmaa J 1999 Phys. Rev. B 60 7278 [47] Takano K, Kito Y, Ōno Y and Sano K 2003 Phys. Rev. Lett. 91 197202 [48] Mambrini M, Läuchli A, Poilblanc D and Mila F 2006 Phys. Rev. B 74 144422 [49] Darradi R, Derzhko O, Zinke R, Schulenburg J, Krüger S E and Richter J 2008 Phys. Rev. B 78 214415 [50] Murg V, Verstraete F and Cirac J I 2009 Phys. Rev. B 79 195119 [51] Haghshenas R and Sheng D N 2018 Phys. Rev. B 97 174408 [52] Hasik J, Poilblanc D and Becca F 2021 SciPost Phys. 10 012 [53] Qian X J and Qin M P 2024 Phys. Rev. B 109 L161103 [54] Zhitomirsky M E and Ueda K 1996 Phys. Rev. B 54 9007 [55] Capriotti L and Sorella S 2000 Phys. Rev. Lett. 84 3173 [56] Isaev L, Ortiz G and Dukelsky J 2009 Phys. Rev. B 79 024409 [57] Yu J F and Kao Y J 2012 Phys. Rev. B 85 094407 [58] Doretto R L 2014 Phys. Rev. B 89 104415 [59] Chubukov A V and Jolicoeur T 1991 Phys. Rev. B 44 12050 [60] Gong S S, Zhu W, Sheng D N, Motrunich O I and Fisher M P A 2014 Phys. Rev. Lett. 113 027201 [61] Zhang X Y, Chi R Z, Liu Y and Wang L 2024 Phys. Rev. B 109 075129 [62] A direct power fitting of the data in Fig. 3 gives extrapolated values -0.50376(4) (J2 = 0.5) and -0.49506(55) (J2 = 0.55) in the large-D limit, which agree very well the exact values -0.50381 and -0.495178 in Ref. [35]. [63] Chen A and Heyl Markus 2024 Nat. Phys. 20 1476 [64] Ledinauskas E and Anisimovas E 2023 SciPost Phys. 15 229 [65] Szabó A and Castelnovo C 2020 Phys. Rev. Res. 2 033075 [66] Liang X, Liu W Y, Lin P Z, Guo G C, Zhang Y S and He L 2018 Phys. Rev. B 98 104426 [67] Wang J Q, Wu H Q, He R Q and Lu Z Y 2024 Phys. Rev. B 109 245120 [68] Ferrari F, Becca F and Carrasquilla J 2019 Phys. Rev. B 100 125131 [69] Reh M, Schmitt M and Gärttner M 2023 Phys. Rev. B 107 195115 [70] Chen H, Hendry D, Weinberg P and Feiguin A 2023 Advances in Neural Information Processing Systems (Curran Associates, Inc.) pp. 7490–7503 [71] Li M, Chen J, Xiao Q, Wang F, Jiang Q, Zhao X, Lin R, An H, Liang X and He L 2022 IEEE Transactions on Parallel and Distributed Systems 33 2846 [72] Liang X, Dong S J and He L 2021 Phys. Rev. B 103 035138 [73] Liang X, Li M, Xiao Q, Chen J, Yang C, An H and He L 2023 Machine Learning: Science and Technology 4 015035 [74] Rende R, Viteritti L L, Bardone L, Becca F and Goldt S arXiv:2310.05715 [75] Chen B B, Gao Y, Guo Y B, Liu Y, Zhao H H, Liao H J, Wang L, Xiang T, Li W and Xie Z Y 2020 Phys. Rev. B 101 220409 [76] Xie Z Y, Chen J, Yu J F, Kong X, Normand B and Xiang T 2014 Phys. Rev. X 4 011025 [77] Sandvik A W and Vidal G 2007 Phys. Rev. Lett. 99 220602 [78] Liu W Y, Huang Y Z, Gong S S and Gu Z C 2021 Phys. Rev. B 103 235155 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|