Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087107    DOI: 10.1088/1674-1056/acd527
RAPID COMMUNICATION Prev   Next  

Atomistic simulations of graphene origami: Dynamics and kinetics

Panpan Zhang(张盼盼)1,2,†, Haihong Jia(贾海洪)1,2,†, Yan-Fang Zhang(张艳芳)1,‡, and Shixuan Du(杜世萱)1,2,3,§
1. Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2. Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
3. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Origami offers two-dimensional (2D) materials with great potential for applications in flexible electronics, sensors, and smart devices. However, the dynamic process, which is crucial to construct origami, is too fast to be characterized by using state-of-the-art experimental techniques. Here, to understand the dynamics and kinetics at the atomic level, we explore the edge effects, structural and energy evolution during the origami process of an elliptical graphene nano-island (GNI) on a highly ordered pyrolytic graphite (HOPG) substrate by employing steered molecular dynamics simulations. The results reveal that a sharper armchair edge is much easier to be lifted up and realize origami than a blunt zigzag edge. The potential energy of the GNI increases at the lifting-up stage, reaches the maximum at the beginning of the bending stage, decreases with the formation of van der Waals overlap, and finally reaches an energy minimum at a half-folded configuration. The unfolding barriers of elliptical GNIs with different lengths of major axis show that the major axis should be larger than 242 Å to achieve a stable single-folded structure at room temperature. These findings pave the way for pursuing other 2D material origami and preparing origami-based nanodevices.
Keywords:  origami process      dynamics and kinetics      structure and energy evolution      stability of single-folded structure  
Received:  05 April 2023      Revised:  11 May 2023      Accepted manuscript online:  12 May 2023
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61888102 and 52102193), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB30000000), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Yan-Fang Zhang, Shixuan Du     E-mail:  zhangyanfang@ucas.ac.cn;sxdu@iphy.ac.cn

Cite this article: 

Panpan Zhang(张盼盼), Haihong Jia(贾海洪), Yan-Fang Zhang(张艳芳), and Shixuan Du(杜世萱) Atomistic simulations of graphene origami: Dynamics and kinetics 2023 Chin. Phys. B 32 087107

[1] Ning X, Wang X, Zhang Y, Yu X, Choi D, Zheng N, Kim D S, Huang Y, Zhang Y and Rogers J A 2018 Adv. Mater. Interfaces 5 1800284
[2] Chen S, Chen J, Zhang X, Li Z Y and Li J 2020 Light Sci. Appl. 9 99
[3] Zhang Z, Tian Z, Mei Y and Di Z 2021 Mater. Sci. Eng. R Rep. 145 100621
[4] Jamalimehr A, Mirzajanzadeh M, Akbarzadeh A and Pasini D 2022 Nat. Commun. 13 1816
[5] Queisser F and Schützhold R 2013 Phys. Rev. Lett. 111 046601
[6] Wang Z, Jing L, Yao K, Yang Y, Zheng B, Soukoulis C M, Chen H and Liu Y 2017 Adv. Mater. 29 1700412
[7] Zhao G, Mu H, Liu F and Wang Z 2020 Nano Lett. 20 5860
[8] Li S Y, Su Y, Ren Y N and He L 2020 Phys. Rev. Lett. 124 106802
[9] Wei N, Chen Y, Cai K, Zhang Y, Pei Q, Zheng J C, Mai Y W and Zhao J 2022 Green Energy Environ. 7 86
[10] Ho D T, Park H S, Kim S Y and Schwingenschlögl U 2020 ACS Nano 14 8969
[11] Yang H and Ma L 2020 Mater. Des. 188 108430
[12] Becker C, Bao B, Karnaushenko D D, Bandari V K, Rivkin B, Li Z, Faghih M, Karnaushenko D and Schmidt O G 2022 Nat. Commun. 13 2121
[13] Lee W, Liu Y, Lee Y, Sharma B K, Shinde S M, Kim S D, Nan K, Yan Z, Han M and Huang Y 2018 Nat. Commun. 9 1417
[14] Han E, Yu J, Annevelink E, Son J, Kang D A, Watanabe K, Taniguchi T, Ertekin E, Huang P Y and van der Zande A M 2020 Nat. Mater. 19 305
[15] Chang J S, Kim S, Sung H J, Yeon J, Chang K J, Li X and Kim S 2018 Small 14 1803386
[16] Shi L J, Yang L Z, Deng J Q, Tong L H, Wu Q, Zhang L, Zhang L, Yin L J and Qin Z 2020 Carbon 165 169
[17] Chen H, Zhang X L, Zhang Y Y, Wang D, Bao D L, Que Y, Xiao W, Du S, Ouyang M and Pantelides S T 2019 Science 365 1036
[18] Xu W, Qin Z, Chen C T, Kwag H R, Ma Q, Sarkar A, Buehler M J and Gracias D H 2017 Sci. Adv. 3 e1701084
[19] He Z Z, Zhu Y B and Wu H A 2018 Front. Phys. 13 138111
[20] Annett J and Cross G L 2016 Nature 535 271
[21] Zang X, Shen C, Chu Y, Li B, Wei M, Zhong J, Sanghadasa M and Lin L 2018 Adv. Mater. 30 1800062
[22] Dai Z, Liu L and Zhang Z 2019 Adv. Mater. 31 1805417
[23] Wang Y and Crespi V H 2017 Nano Lett. 17 6708
[24] Reynolds M F, McGill K L, Wang M A, Gao H, Mujid F, Kang K, Park J, Miskin M Z, Cohen I and McEuen P L 2019 Nano Lett. 19 6221
[25] Fan X, Kim S W, Tang J, Huang X, Lin Z, Zhu L, Li L, Cho J H and Zeng C 2021 Nano Lett. 21 2033
[26] Zhu S and Li T 2014 ACS Nano 8 2864
[27] Zhang L, Zeng X and Wang X 2013 Sci. Rep. 3 3162
[28] Ho D T, Ho V H, Babar V, Kim S Y and Schwingenschlögl U 2020 Nanoscale 12 10172
[29] Wei N, Chen Y, Zhang Y, Zheng J C, Zhao J and Mai Y W 2020 Carbon 165 259
[30] Yang Y, Zhang Z, Hu Z, Penev E S and Yakobson B I 2021 MRS Bull. 46 481
[31] Rico F, Gonzalez L, Casuso I, Puig-Vidal M and Scheuring S 2013 Science 342 741
[32] Qi J, Gao Y, Jia H, Richter M, Huang L, Cao Y, Yang H, Zheng Q, Berger R and Liu J 2020 J. Am. Chem. Soc. 142 10673
[33] Wang J, Wolf R M, Caldwell J W, Kollman P A and Case D A 2004 J. Comput. Chem. 25 1157
[34] Abraham M J, Murtola T, Schulz R, Pall S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1-2 19
[35] Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M, Cohen M L and Zettl A 2011 Phys. Rev. B 83 245433
[36] Zhang J, Xiao J, Meng X, Monroe C, Huang Y and Zuo J M 2010 Phys. Rev. Lett. 104 166805
[37] Levine B G, Stone J E and Kohlmeyer A 2011 J. Comput. Phys. 230 3556
[1] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[2] Polymorph selection of magnesium under different pressures: A simulation study
Wei Liu(刘维), Boqiang Wu(吴博强), Ze'an Tian(田泽安), Yunfei Mo(莫云飞), Tingfei Xi(奚廷斐), Zhiyi Wan(万子义), Rangsu Liu(刘让苏), and Hairong Liu(刘海蓉). Chin. Phys. B, 2022, 31(1): 016103.
[3] Peculiar diffusion behavior of AlCl4 intercalated in graphite from nanosecond-long molecular dynamics simulations
Qianpeng Wang(王乾鹏), Daye Zheng(郑大也), Lixin He(何力新), and Xinguo Ren(任新国). Chin. Phys. B, 2021, 30(10): 107102.
[4] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[5] Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica
Fu-Jie Zhang(张福杰), Bao-Hua Zhou(周保花), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(2): 027101.
[6] Ab initio molecular dynamics simulations of nano-crystallization of Fe-based amorphous alloys with early transition metals
Yao-Cen Wang(汪姚岑), Yan Zhang(张岩), Yoshiyuki Kawazoe, Jun Shen(沈军), Chong-De Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116401.
[7] Multiscale energy density algorithm and application to surface structure of Ni matrix of superalloy
Min Sun(孙敏), Chong-Yu Wang(王崇愚), Ji-Ping Liu(刘吉平). Chin. Phys. B, 2018, 27(9): 097105.
[8] Effect of disorder on exciton dissociation in conjugated polymers
Yuwen Feng(冯誉雯), Hui Zhao(赵晖), Yuguang Chen(陈宇光), Yonghong Yan(鄢永红). Chin. Phys. B, 2017, 26(10): 107103.
[9] Study of structural and magnetic properties of Fe80P9B11 amorphous alloy by ab initio molecular dynamic simulation
Li Zhu(朱力), Yin-Gang Wang(王寅岗), Cheng-Cheng Cao(曹成成), Yang Meng(孟洋). Chin. Phys. B, 2017, 26(6): 067101.
[10] Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires
Hongxian Xie(谢红献), Tao Yu(于涛), Wei Fang(方伟), Fuxing Yin(殷福星), Dil Faraz Khan. Chin. Phys. B, 2016, 25(12): 126201.
[11] Quantitative determination of anti-structured defects applied to alloys of a wide chemical range
Jing Zhang(张静), Zheng Chen(陈铮), Yongxin Wang(王永欣), Yanli Lu(卢艳丽). Chin. Phys. B, 2016, 25(11): 116102.
[12] Electronic structure and magnetic properties of (Cu, N)-codoped 3C-SiC studied by first-principles calculations
Feng-chun Pan(潘凤春), Zhi-peng Chen(陈治鹏), Xue-ling Lin(林雪玲), Fu Zheng(郑富), Xu-ming Wang(王旭明), Huan-ming Chen(陈焕铭). Chin. Phys. B, 2016, 25(9): 096108.
[13] Phase transition and chemical decomposition of liquid carbon dioxide and nitrogen mixture under extreme conditions
Xiao-Xu Jiang(姜晓旭), Guan-Yu Chen(陈冠宇), Yu-Tong Li(李玉同), Xin-Lu Cheng(程新路), Cui-Ming Tang(唐翠明). Chin. Phys. B, 2016, 25(2): 026102.
[14] Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds
Yexin Feng(冯页新), Ji Chen(陈基), Xin-Zheng Li(李新征), Enge Wang(王恩哥). Chin. Phys. B, 2016, 25(1): 013104.
[15] Heterogeneous fragmentation of metallic liquid microsheet with high velocity gradient
An-Min He(何安民), Pei Wang(王裴), Jian-Li Shao(邵建立). Chin. Phys. B, 2016, 25(1): 017102.
No Suggested Reading articles found!