|
|
Atomistic simulations of graphene origami: Dynamics and kinetics |
Panpan Zhang(张盼盼)1,2,†, Haihong Jia(贾海洪)1,2,†, Yan-Fang Zhang(张艳芳)1,‡, and Shixuan Du(杜世萱)1,2,3,§ |
1. Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2. Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China; 3. Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Origami offers two-dimensional (2D) materials with great potential for applications in flexible electronics, sensors, and smart devices. However, the dynamic process, which is crucial to construct origami, is too fast to be characterized by using state-of-the-art experimental techniques. Here, to understand the dynamics and kinetics at the atomic level, we explore the edge effects, structural and energy evolution during the origami process of an elliptical graphene nano-island (GNI) on a highly ordered pyrolytic graphite (HOPG) substrate by employing steered molecular dynamics simulations. The results reveal that a sharper armchair edge is much easier to be lifted up and realize origami than a blunt zigzag edge. The potential energy of the GNI increases at the lifting-up stage, reaches the maximum at the beginning of the bending stage, decreases with the formation of van der Waals overlap, and finally reaches an energy minimum at a half-folded configuration. The unfolding barriers of elliptical GNIs with different lengths of major axis show that the major axis should be larger than 242 Å to achieve a stable single-folded structure at room temperature. These findings pave the way for pursuing other 2D material origami and preparing origami-based nanodevices.
|
Received: 05 April 2023
Revised: 11 May 2023
Accepted manuscript online: 12 May 2023
|
PACS:
|
71.15.Pd
|
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61888102 and 52102193), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB30000000), and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Yan-Fang Zhang, Shixuan Du
E-mail: zhangyanfang@ucas.ac.cn;sxdu@iphy.ac.cn
|
Cite this article:
Panpan Zhang(张盼盼), Haihong Jia(贾海洪), Yan-Fang Zhang(张艳芳), and Shixuan Du(杜世萱) Atomistic simulations of graphene origami: Dynamics and kinetics 2023 Chin. Phys. B 32 087107
|
[1] Ning X, Wang X, Zhang Y, Yu X, Choi D, Zheng N, Kim D S, Huang Y, Zhang Y and Rogers J A 2018 Adv. Mater. Interfaces 5 1800284 [2] Chen S, Chen J, Zhang X, Li Z Y and Li J 2020 Light Sci. Appl. 9 99 [3] Zhang Z, Tian Z, Mei Y and Di Z 2021 Mater. Sci. Eng. R Rep. 145 100621 [4] Jamalimehr A, Mirzajanzadeh M, Akbarzadeh A and Pasini D 2022 Nat. Commun. 13 1816 [5] Queisser F and Schützhold R 2013 Phys. Rev. Lett. 111 046601 [6] Wang Z, Jing L, Yao K, Yang Y, Zheng B, Soukoulis C M, Chen H and Liu Y 2017 Adv. Mater. 29 1700412 [7] Zhao G, Mu H, Liu F and Wang Z 2020 Nano Lett. 20 5860 [8] Li S Y, Su Y, Ren Y N and He L 2020 Phys. Rev. Lett. 124 106802 [9] Wei N, Chen Y, Cai K, Zhang Y, Pei Q, Zheng J C, Mai Y W and Zhao J 2022 Green Energy Environ. 7 86 [10] Ho D T, Park H S, Kim S Y and Schwingenschlögl U 2020 ACS Nano 14 8969 [11] Yang H and Ma L 2020 Mater. Des. 188 108430 [12] Becker C, Bao B, Karnaushenko D D, Bandari V K, Rivkin B, Li Z, Faghih M, Karnaushenko D and Schmidt O G 2022 Nat. Commun. 13 2121 [13] Lee W, Liu Y, Lee Y, Sharma B K, Shinde S M, Kim S D, Nan K, Yan Z, Han M and Huang Y 2018 Nat. Commun. 9 1417 [14] Han E, Yu J, Annevelink E, Son J, Kang D A, Watanabe K, Taniguchi T, Ertekin E, Huang P Y and van der Zande A M 2020 Nat. Mater. 19 305 [15] Chang J S, Kim S, Sung H J, Yeon J, Chang K J, Li X and Kim S 2018 Small 14 1803386 [16] Shi L J, Yang L Z, Deng J Q, Tong L H, Wu Q, Zhang L, Zhang L, Yin L J and Qin Z 2020 Carbon 165 169 [17] Chen H, Zhang X L, Zhang Y Y, Wang D, Bao D L, Que Y, Xiao W, Du S, Ouyang M and Pantelides S T 2019 Science 365 1036 [18] Xu W, Qin Z, Chen C T, Kwag H R, Ma Q, Sarkar A, Buehler M J and Gracias D H 2017 Sci. Adv. 3 e1701084 [19] He Z Z, Zhu Y B and Wu H A 2018 Front. Phys. 13 138111 [20] Annett J and Cross G L 2016 Nature 535 271 [21] Zang X, Shen C, Chu Y, Li B, Wei M, Zhong J, Sanghadasa M and Lin L 2018 Adv. Mater. 30 1800062 [22] Dai Z, Liu L and Zhang Z 2019 Adv. Mater. 31 1805417 [23] Wang Y and Crespi V H 2017 Nano Lett. 17 6708 [24] Reynolds M F, McGill K L, Wang M A, Gao H, Mujid F, Kang K, Park J, Miskin M Z, Cohen I and McEuen P L 2019 Nano Lett. 19 6221 [25] Fan X, Kim S W, Tang J, Huang X, Lin Z, Zhu L, Li L, Cho J H and Zeng C 2021 Nano Lett. 21 2033 [26] Zhu S and Li T 2014 ACS Nano 8 2864 [27] Zhang L, Zeng X and Wang X 2013 Sci. Rep. 3 3162 [28] Ho D T, Ho V H, Babar V, Kim S Y and Schwingenschlögl U 2020 Nanoscale 12 10172 [29] Wei N, Chen Y, Zhang Y, Zheng J C, Zhao J and Mai Y W 2020 Carbon 165 259 [30] Yang Y, Zhang Z, Hu Z, Penev E S and Yakobson B I 2021 MRS Bull. 46 481 [31] Rico F, Gonzalez L, Casuso I, Puig-Vidal M and Scheuring S 2013 Science 342 741 [32] Qi J, Gao Y, Jia H, Richter M, Huang L, Cao Y, Yang H, Zheng Q, Berger R and Liu J 2020 J. Am. Chem. Soc. 142 10673 [33] Wang J, Wolf R M, Caldwell J W, Kollman P A and Case D A 2004 J. Comput. Chem. 25 1157 [34] Abraham M J, Murtola T, Schulz R, Pall S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1-2 19 [35] Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M, Cohen M L and Zettl A 2011 Phys. Rev. B 83 245433 [36] Zhang J, Xiao J, Meng X, Monroe C, Huang Y and Zuo J M 2010 Phys. Rev. Lett. 104 166805 [37] Levine B G, Stone J E and Kohlmeyer A 2011 J. Comput. Phys. 230 3556 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|