Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030202    DOI: 10.1088/1674-1056/acf702
GENERAL Prev   Next  

Adaptive interaction driven by the learning effect in the spatial prisoner's dilemma

Jiaqi Li(李佳奇)1,†, Jianlei Zhang(张建磊)2, and Qun Liu(刘群)1
1 Institute of Intelligent Information, Hexi University, Gansu 734000, China;
2 College of Artificial Intelligence, Nankai University, Tianjin 300350, China
Abstract  We propose a computing model in which individuals can automatically adjust their interaction intensity with their mentor according to the learning effect. This model is designed to investigate the cooperative dynamics of the spatial prisoner's dilemma. More specifically, when the cumulative payoff of a learner is more than his reference earning, he will strengthen his interaction with his mentor; otherwise, he will reduce it. The experimental results indicate that this mechanism can improve the emergence of cooperation in a networked population and that the driving coefficient of interaction intensity plays an important role in promoting cooperation. Interestingly, under a certain social dilemma condition, there exists a minimal driving coefficient that leads to optimal cooperation. This occurs due to a positive feedback effect between the individual's satisfaction frequency and the number of effective neighbors. Moreover, we find that the experimental results are in accord with theoretical predictions obtained from an extension of the classical pair-approximation method. Our conclusions obtained by considering relationships with mentors can provide a new perspective for future investigations into the dynamics of evolutionary games within structured populations.
Keywords:  self-adapting interaction      evolutionary game      mentor      spatial prisoner's dilemma  
Received:  04 June 2023      Revised:  22 August 2023      Accepted manuscript online:  06 September 2023
PACS:  02.50.Le (Decision theory and game theory)  
  89.75.Fb (Structures and organization in complex systems)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61963013).
Corresponding Authors:  Jiaqi Li     E-mail:  lijiaqi006@126.com

Cite this article: 

Jiaqi Li(李佳奇), Jianlei Zhang(张建磊), and Qun Liu(刘群) Adaptive interaction driven by the learning effect in the spatial prisoner's dilemma 2024 Chin. Phys. B 33 030202

[1] Allen B, Gore J and Nowak M A 2013 eLife 2 e01169
[2] Zhang J L, Chen Z Q and Liu Z X 2016 Phys. Rev. E 93 032320
[3] Radzvilavicius A L, Stewart A J and Plotkin J B 2019 eLife 8 e44269
[4] Zhang J L and Zhang C Y 2015 J. Stat. Mech. 5 p05001
[5] Hao D, Rong Z H and Zhou T 2014 Chin. Phys. B 23 078905
[6] Wang X J, Gu C L, Lv S J and Quan J 2019 Chin. Phys. B 28 020203
[7] Xiao Y P, Chen D Q, Wei S H, Li Q, Wang H H and Xu M 2019 Nonlinear Dyn. 95 523
[8] Li J Q, Zhang C Y, Sun Q L, Chen Z Q and Zhang J L 2017 IEEE Trans. Evol. Comput. 21 506
[9] Zhang J L, Xu Z M, Liu Z X and Chen Z Q 2018 Int. J. Syst. Sci 49 1934
[10] Tanimoto J An X 2019 Chaos Soliton Fract. 122 1
[11] Sigmund K 2007 Trends Ecol. Evol. 22 593
[12] Zhang J L, Zhang C Y and Cao M 2015 Sci. Rep. 5 9098
[13] Tanimoto J 2014 Phys. Rev. E 89 012106
[14] Santos F C and Pacheco J M 2006 Proc. Natl. Acad. Sci. USA 103 3490
[15] Liu L J, Chen X J and Perc M 2019 Nonlinear Dyn. 97 749
[16] Liang H L, Cui Y, Ren X Q and Wang X F 2021 Informa. Sciences 579 888
[17] Nowak M A and May R M 1992 Nature 359 826
[18] Ariful Kabir K M, Tanimoto J and Wang Z 2018 Eur. Phys. J. B 91 312
[19] Iotti B, Antonioni A, Bullock S, Darabos C, Tomassini M and Giacobini M 2017 Phys. Rev. E 96 052316
[20] Ichinose G and Sayama H 2017 Artif. Life 23 25
[21] Wu Y, Zhang B and Zhang S H 2017 Chaos Soliton Fract. 103 289
[22] Liu J Z, Meng H R, Wang W, Li T and Yu Y 2018 Chaos Soliton Fract. 109 214
[23] Cuesta J A, Gracialázaro C, Ferrer A, Moreno Y and Sánchez A 2015 Sci. Rep. 5 7843
[24] Xia C Y, Wang J, Perc M and Wang Z 2023 Phys. Life Rev. 46 8
[25] Wang J and Xia C Y 2023 Europhys. Lett. 141 21001
[26] Chen M H, Wang L, Sun S W, Wang J and Xia C Y 2016 Phys. Lett. A 380 40
[27] Shen C, Chu C, Shi L, Jusup M, Perc M and Wang Z 2018 EPL 124 48003
[28] Chen X J and Wang L 2009 Phys. Rev. E 80 046109
[29] Szolnoki A and Perc M 2008 New J. Phys. 10 043036
[30] Chen Y Z, Huang Z G, Wang S J, Zhang Y and Wang Y H 2008 Phys. Rev. E 79 055101
[31] Ye W X and Fan S H 2017 Appl. Math. Comput. 294 310
[32] Ye W X, Feng W Y, Lü C and Fan S H 2017 Appl. Math. Comput. 307 31
[33] Gao L, Wang W, Shu P P, Gao H and Braunstein L A 2017 Europhys. Lett. 118 18001
[34] Li J Q, Dang J W and Zhang J L 2020 Appl. Math. Comput. 369 124837
[35] Dai Y Y, Zhan G J, Ye Y, Bao W, Wen T, Cheong K H and Xie N G 2021 Chaos 31 033153
[36] Li J Q, Zhang C Y, Sun Q L and Chen Z Q 2015 Chaos Soliton Fract. 77 253
[37] Li Y, Ye H and Zhang H 2016 Physica A 445 48
[38] Wang Z, Wang L, Szolnoki A and Perc M 2015 Eur. Phys. J. B 88 124
[39] Shi L, Shen C, Geng Y N, Chu C, Meng H R, Perc M, Boccaletti S and Wang Z 2019 Nonlinear Dyn. 96 49
[40] Luo C, Zhang X L and Zheng Y J 2017 Commun. Nonlinear Sci. Numer. Simul. 47 407
[41] Traulsen A, Nowak M A and Pacheco J M 2007 J. Theor. Biol. 244 349
[42] Chen X J, Fu F and Wang L 2008 Phys. Rev. E 78 051120
[43] Li J Q, Park J H, Zhang J L, Chen Z Q and Dehmer M 2020 Nonlinear Dyn. 100 831
[44] Szabó G and Töke C 1998 Phys. Rev. E 58 69
[45] Szabó G and Fath G 2007 Phys. Rep. 446 97
[46] Blume L E 1993 Games Econ. Behav. 5 387
[47] Hauert C and Doebeli M 2004 Nature 428 643
[48] Wang Z and Szolnoki A 2014 New J. Phys. 16 033041
[49] Yang G L, Zhang W M and Xiu B X 2015 J. Theor. Biol. 372 118
[50] Chen Y H and Huang H 2022 Appl. Math. Comput. 416 126754
[51] Xu X L, Chen Z Q, Si G Y, Hu X F, Jiang Y Q and Xu X S 2011 Nonlinear Dyn. 64 117
[52] Xia C Y, Wang L, Sun S and Wang J 2012 Nonlinear Dyn. 69 927
[1] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[2] Voter model on adaptive networks
Jinming Du(杜金铭). Chin. Phys. B, 2022, 31(5): 058902.
[3] The evolution of cooperation in public good game with deposit
Xian-Jia Wang(王先甲), Wen-Man Chen(陈文嫚). Chin. Phys. B, 2019, 28(8): 080201.
[4] Evolutionary game dynamics of combining the Moran and imitation processes
Xian-Jia Wang(王先甲), Cui-Ling Gu(顾翠伶), Shao-Jie Lv(吕少杰), Ji Quan(全吉). Chin. Phys. B, 2019, 28(2): 020203.
[5] Biham-Middleton-Levine model in consideration of cooperative willingness
Pan Wei (盘薇), Xue Yu (薛郁), Zhao Rui (赵瑞), Lu Wei-Zhen (卢伟真). Chin. Phys. B, 2014, 23(5): 058902.
[6] Hysteresis behavior and nonequilibrium phase transition in a one-dimensional evolutionary game model
Hua Da-Yin (华达银). Chin. Phys. B, 2013, 22(4): 040512.
[7] A 2-stage strategy updating rule promotes cooperation in the prisoner's dilemma game
Fang Xiang-Sheng (方祥圣), Zhu Ping (朱平), Liu Run-Ran (刘润然), Liu En-Yu (刘恩钰), Wei Gui-Yi (魏贵义). Chin. Phys. B, 2012, 21(10): 108702.
[8] Integrating the environmental factor into the strategy updating rule to promote cooperation in evolutionary games
Zhao Lin(赵琳), Zhou Xin(周鑫), Liang Zhi(梁治), and Wu Jia-Rui(吴家睿) . Chin. Phys. B, 2012, 21(1): 018701.
[9] Evolutionary games in a generalized Moran process with arbitrary selection strength and mutation
Quan Ji(全吉) and Wang Xian-Jia(王先甲) . Chin. Phys. B, 2011, 20(3): 030203.
No Suggested Reading articles found!