Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060307    DOI: 10.1088/1674-1056/ad2f20
GENERAL Prev   Next  

Wigner function of optical cumulant operator and its dissipation in thermo-entangled state representation

Ke Zhang(张科)1, Lan-Lan Li(李兰兰)1, and Hong-Yi Fan(范洪义)2,†
1 School of Electronic Engineering, Huainan Normal University, Huainan 232038, China;
2 Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
Keywords:  Wigner function      optical cumulant operator      dissipation evolution      thermo-entangled state representation      integration within ordered product of operators  
Received:  24 January 2024      Revised:  22 February 2024      Accepted manuscript online:  01 March 2024
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077) and the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586).
Corresponding Authors:  Hong-Yi Fan     E-mail:  fhym@ustc.edu.cn

Cite this article: 

Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义) Wigner function of optical cumulant operator and its dissipation in thermo-entangled state representation 2024 Chin. Phys. B 33 060307

[1] Wan Z L, Fan H Y, Li H M and Wang Z 2017 Int. J. Theor. Phys. 56 3188
[2] Gong L H, Zhou N R, Hu L Y and Fan H Y 2012 Chin. Phys. B 21 080302
[3] Materdey T B and Seyler C E 2003 Int. J. Mod. Phys. B 17 4555
[4] Meng X G, Wang J S, Liang B L and Li H Q 2008 Chin. Phys. B 17 1791
[5] Peng H H, Zhang J J, Sheng X L and Wang Q 2021 Chin. Phys. Lett. 38 116701
[6] Fan H Y and Yang Z S 1998 Mod. Phys. Lett. A 13 2679
[7] Fan H Y 2003 Commun. Theor. Phys. 40 409
[8] Zhang K, Fan C Y and Fan H Y 2020 Chin. Phys. B 29 030306
[9] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303
[10] Fan H Y and Liu S G 2007 Int. J. Mod. Phys. A 22 4481
[11] Fan H Y, Li H Q and Xu X L 2011 Commun. Theor. Phys. 55 415
[12] Fan H Y, Lu H L, Gao W B and Xu X F 2006 Ann. Phys. 321 2116
[13] Zhang K, Li L L, Yu P P, Zhou Y, Guo D W and Fan H Y 2023 Chin. Phys. B 32 040302
[14] Chen Q F, Ye Q, Li Z H and Fan H Y 2012 Mod. Phys. Lett. B 26 1250085
[15] Fan H Y and Hu L Y 2009 Commun. Theor. Phys. 51 729
[16] Hu L Y, Wang Z S, Kwek L C and Fan H Y 2011 Chin. Phys. B 20 084203
[17] Tang X B and Fan H Y 2008 Int. J. Theor. Phys. 47 2952
[18] Wang T T and Fan H Y 2012 Chin. Phys. B 21 034203
[19] Xu Y J, Fan H Y and Liu Q Y 2010 Chin. Phys. B 19 020303
[20] Fan H Y and Ruan T N 1983 Commun. Theor. Phys. 2 1563
[21] Fan H Y 2008 Ann. Phys. 323 1502
[22] Fan H Y 1989 Commun. Theor. Phys. 12 219
[23] Fan H Y and Li H Q 2007 Chin. Phys. Lett. 24 3322
[24] Lv C H, Cai Y, Jin N and Huang N 2022 Chin. Phys. B 31 020303
[25] Wang X G 2000 Int. J. Mod. Phys. B 14 1093
[26] Wang L, Yi Z, Sun L H and Gu W J 2022 Chin. Phys. B 31 054206
[27] Zavatta A, Viciani S and Bellini M 2005 Phys. Rev. A 72 023820
[28] Klauder J R 1984 Phys. Rev. A 29 2036
[29] Chen H X and Zhang J 2009 Phys. Rev. A 79 063826
[30] Zou X B and Mathis W 2005 Phys. Lett. A 337 305
[31] Fan H Y and Guo Q 2006 Phys. Lett. A 358 203
[32] Fan H Y and Chen J H 2003 Commun. Theor. Phys. 40 589
[33] Fan H Y and Da C 2013 Chin. Phys. B 22 090303
[34] Phien H N and An N B 2008 Phys. Lett. A 372 2825
[35] Fan H Y and Sun Z H 1999 Mod. Phys. Lett. B 13 463
[36] Chai C L 1992 Phys. Rev. A 46 7187
[1] Non-Gaussian quantum states generated via quantum catalysis and their statistical properties
Xiao-Yan Zhang(张晓燕), Chun-Yan Yang(杨春燕), Ji-Suo Wang(王继锁), and Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2024, 33(4): 040308.
[2] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[3] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[4] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[5] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[6] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[7] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[8] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[9] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[10] A new kind of special function and its application
Fan Hong-Yi (范洪义), Wan Zhi-Long (万志龙), Wu Ze (吴泽), Zhang Peng-Fei (张鹏飞). Chin. Phys. B, 2015, 24(10): 100302.
[11] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[12] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[13] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[14] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[15] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
No Suggested Reading articles found!