Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087801    DOI: 10.1088/1674-1056/ad50bd
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials

Zhaowen Xu(徐兆文), Xue Bai(白雪)†, Jian Ma(马健), Zhuangzhuang Wan(万壮壮), and Chaoqun Wang(王超群)
Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
Abstract  Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated. The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime. An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio. An approach for characterizing grain size was proposed using spectral central frequency ratio (SCFR) based on time-frequency analysis. The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density; even at high power densities, a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect. This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density. Furthermore, both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials; however, the shear wave SCFR is more sensitive to finer-grained materials. This study holds great significance for evaluating metal material properties using laser ultrasound.
Keywords:  laser-ultrasonics      polycrystalline materials      ultrasonic time-frequency characteristics      grain size  
Received:  28 December 2023      Revised:  25 April 2024      Accepted manuscript online:  28 May 2024
PACS:  78.20.hc (Laser ultrasonics)  
  81.70.Cv (Nondestructive testing: ultrasonic testing, photoacoustic testing)  
  43.35.Cg (Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)  
Fund: The work was supported in part by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2023ME073), the National Natural Science Foundation of China (Grant No. 51805304), the Education Department of Shandong Province, China (Grant No. 2022KJ130), and Qilu University of Technology (Shandong Academy of Sciences), China (Grant Nos. 2023PY009, 2021JC02008 and 2022GH005).
Corresponding Authors:  Xue Bai     E-mail:  baixue0130@163.com

Cite this article: 

Zhaowen Xu(徐兆文), Xue Bai(白雪), Jian Ma(马健), Zhuangzhuang Wan(万壮壮), and Chaoqun Wang(王超群) Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials 2024 Chin. Phys. B 33 087801

[1] Xie L Y, Lian Y D, Du F J, Wang Y L and Lu Z W 2024 Opt. Laser Technol. 176 110876
[2] Sun G and Zhou Z 2014 Optik 125 3608
[3] Ji B P, Zhang Q D, Cao J S, Li H and Zhang B Y 2021 Optik 226 165893
[4] Davies S J, Edwards C, Taylor G S and Palmer S B 1993 J. Phys. D: Appl. Phys. 26 329
[5] Garcin T, Schmitt J H and Militzer M 2016 J. Alloys Compd. 670 329
[6] Davis G, Nagarajah R, Palanisamy S, Rashid RAR, Rajagopal P and Balasubra-maniam K 2019 Int. J. Adv. Manuf. Technol. 102 2571
[7] Song Y F, Zi X H, Fu Y D, Li X B, Chen C and Zhou K C 2018 Measurement 118 105
[8] Rose L R F 1984 J. Acoust. Soc. Am. 75 723
[9] Doyle P A 1986 J. Phys. D: Appl. Phys. 19 1613
[10] McDonald F A 1990 Appl. Phys. Lett. 56 230
[11] Sanderson T, Charles U and Jacek J 1997 Review of Progress in Quantitative Nondestructive Evaluation (Berlin: Springer) chap. 16 pp. 601- 607
[12] Sanderson T, Charles U and Jacek J 1998 Ultrasonics 35 553
[13] Dewhurst R J, Hutchins D A, Palmer S B and Scruby C B 1982 J. Appl. Phys. 53 4064
[14] Hutchins D A, Nadeau F and Cielo P 1986 Can. J. Phys. 64 1334
[15] Xu W L, Zhang J, Li X H, Yuan S X, Ma G B, Xue Z X, Jing X C and Cao J C 2022 NDT & E Int. 125 102548
[16] Aussel J D, Brun A L and Baboux J C 1988 Ultrasonics 26 245
[17] Krylov V V 2016 Ultrasonics 69 279
[18] Nakahata K, Sugahara H, Barth M, Kohler B and Schubert F 2016 Ultrasonics 67 18
[19] Van P A, Huthwaite P, Brett C R and Lowe J S 2016 NDT & E Int 81 9
[20] Choi S and Jhang K Y 2018 J. Mech. Sci. Technol. 32 4191
[21] Zhou S, Reynolds P, Krause R, Buma T, O’Donnel M O and Hossack J A 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 1178
[22] Cerniglia D, Pantano A and Mineo C 2011 Appl. Phys. A 105 959
[23] Xu B, Shen Z, Ni X and Lu J 2004 J. Appl. Phys. 95 2116
[24] Pyzik P, Ziaja-Sujdak A, Spytek J, O’Donnel M, Pelivanov I and Ambrozinski L 2021 Photoacoustics 21 100226
[25] Aussel J D and Monchalin J P 1989 Ultrasonics 27 165
[26] Dewhurst R J, Hutchins D A, Palmer S B and Scruby C B 1982 J. Appl. Phys. 53 4064
[27] Quintero R, Simonetti F, Howard P, Friedl J and Sellinger A 2017 NDT & E Int. 88 8
[28] Scruby C B, Dewhurst R J, Hutchins D A and Palmer S B 1980 J. Appl. Phys. 51 6210
[29] Wang K, Wu M Y, Yan Z B, Li D R, Xin R L and Liu Q 2018 J. Alloys Compd. 752 14
[30] Gil F J and Planell J A 2000 Mater. Sci. Eng. A 283 17
[31] Morales R E, Harke K J, Tringe J W, Stobbe D M and Murray T W 2022 Sci. Rep. 12 9865
[32] Choi S and Kyung Y J 2018 J. Mech. Sci. Technol. 32 4191
[33] Dewhurst R J, Hutchins D A, Palmer S B and Scruby C B 1982 J. Appl. Phys. 53 4064
[34] Scryby C B 1990 Laser ultrasonics techniques and applications 1st edn (New York: Boca Raton CRC Press) p. 301
[35] Lin J and Qu L S 2000 J. Sound Vib. 234 135
[36] Zhang Q Z, Yang W and Zhang S B 2018 Sensors 18 198
[37] Mesaros M, Martinez O E, Bilmes G M and Tocho J O 1997 J. Appl. Phys. 81 1014
[38] Bai X, Zhao Y, Ma J, Guo R and Zhang H 2019 Mat. Charact. 155 109800
[39] Stanke F E and Kino G S 1984 J. Acoust. Soc. Am. 75 665
[40] Arguelles A P and Turner J A 2017 J. Acoust. Soc. Am. 141 4347
[41] Kube C M and Turner J A 2015 J. Acoust. Soc. Am. 137 EL476
[1] Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations
Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园). Chin. Phys. B, 2024, 33(1): 016105.
[2] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[3] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
[4] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[5] Effect of grain size and arrangement on dynamic damage evolution of ductile metal
Qi Mei-Lan (祁美兰), Zhong Sheng (钟声), He Hong-Liang (贺红亮), Fan Duan (范端), Zhao Li (赵黎). Chin. Phys. B, 2013, 22(4): 046203.
[6] Thickness dependence of grain size and surface roughness for dc magnetron sputtered Au films
Zhang Xin(张鑫), Song Xiao-Hui(宋小会), and Zhang Dian-Lin(张殿琳). Chin. Phys. B, 2010, 19(8): 086802.
[7] Grain size reduction of copper subjected to repetitive uniaxial compression combined with accumulative fold
Zou Yong-Tao(邹永涛), Lei Li(雷力), Wang Zhao(王赵), Wang Jiang-Hua(王江华), Zhang Wei(张伟), and He Duan-Wei(贺端威). Chin. Phys. B, 2009, 18(2): 815-820.
[8] Research on factors influencing on the microwave permeability of nanocrystalline FeB alloys
Fu Cheng-Wu(傅成武) and Zhang Shuan-Qin(张拴勤). Chin. Phys. B, 2007, 16(6): 1728-1730.
[9] Dependence of coercivity on phase distribution and grain size in nanocomposite Nd2Fe14B/$\alpha$-Fe magnets
Feng Wei-Cun (冯维存), Gao Ru-Wei (高汝伟), Li Wei (李卫), Han Guang-Bing (韩广兵), Sun Yan (孙艳). Chin. Phys. B, 2005, 14(8): 1649-1652.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .