Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087701    DOI: 10.1088/1674-1056/ad51f3
DATA PAPER Prev  

Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance

Rui Xin(辛睿)1, Yaqi Wang(王亚祺)1, Ze Fang(房泽)1, Fengji Zheng(郑凤基)1, Wen Gao(高雯)1, Dashi Fu(付大石)1, Guoqing Shi(史国庆)1, Jian-Yi Liu(刘建一)1,2,†, and Yongcheng Zhang(张永成)1,‡
1 College of Physics, Center for Marine Observation and Communications, National Demonstration Center for Experimental Applied Physics Education, Qingdao University, Qingdao 266071, China;
2 Centre for Theoretical and Computational Physics, College of Physics, Qingdao University, Qingdao 266071, China
Abstract  Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$ (PMN-PT) piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications. Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients. The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics, which makes it not easy to extend the sample data by additional experimental or theoretical calculations. In this paper, a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components. In contrast to all-data-driven model, physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties. Based on the model outputs, the positions of morphotropic phase boundary (MPB) with different Sm doping amounts are explored. We also find the components with the best piezoelectric property and comprehensive performance. Moreover, we set up a database according to the obtained results, through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.
Keywords:  Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$(PMN-PT) ceramic      physics-embedded machine learning      piezoelectric coefficient      Curie temperature  
Received:  03 February 2024      Revised:  23 May 2024      Accepted manuscript online:  30 May 2024
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  77.84.Cg (PZT ceramics and other titanates)  
  77.90.+k (Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)  
  77.80.Jk (Relaxor ferroelectrics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52272116 and 12002400), the Natural Science Foundation of Shandong Province (Grant No. ZR2021ME096), and the Youth Innovation Team Project of Shandong Provincial Education Department (Grant No. 2019KJJ012).
Corresponding Authors:  Jian-Yi Liu, Yongcheng Zhang     E-mail:  jianyi_liu@qdu.edu.cn;qdzhyc@qdu.edu.cn

Cite this article: 

Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成) Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance 2024 Chin. Phys. B 33 087701

[1] Cao Y S, Li J R, Sha A M, Liu Z Z, Zhang F and Li X Z 2022 J. Cleaner Prod. 369 133287
[2] Lu J L, Hu S M, Li W R, Wang X F, Mo X W, Gong X T, Liu H, Luo W, Dong W, Sima C, Wang Y J, Yang G, Luo J T, Jiang S L, Shi Z J and Zhang G Z 2022 ACS Nano 16 3744
[3] Christensen-Jeffries K, Couture O, Dayton P A, Eldar Y C, Hynynen K, Kiessling F, O’Reilly M, Pinton G F, Schmitz G, Tang M X, Tanter M and Van S R J G 2020 Ultrasound Med. Biol. 46 865
[4] Trolier-McKinstry S, Zhang S J, Bell A J and Tan X L 2018 Annu. Rev. Mater. Res. 48 191
[5] Wang J J, Wang S H, Li X, Li L, Liu Z, Zhang J and Wang Y J 2023 J. Adv. Ceram. 12 792
[6] Wang F F, Wang H N, Yang Q S, Zhang Z X and Yan K 2021 Ceram. Int. 47 15005
[7] Yang S, Wang M W, Wang L, Liu J F, Wu J, Li J L, Gao X Y, Chang Y F, Xu Z and Li F 2022 J. Am. Ceram. Soc. 105 3322
[8] Li T Y, Liu C, Shi P, Liu X, Kang R R, Long C B, Wu M, Cheng S D, Mi S B, Xia Y H, Li L L, Wang D and Lou X J 2022 Adv. Funct. Mater. 32 2202307
[9] Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Chen L Q, Shrout T R and Zhang S J 2018 Nat. Mater. 17 349
[10] Guo Q H, Hou L T, Li F, Xia F Q, Wang P B, Hao H, Sun H J, Liu H X and Zhang S J 2019 J. Am. Ceram. Soc. 102 7428
[11] Fang Z, Tian X, Zheng F J, Jiang X D, Ye W N, Qin Y L, Wang X X and Zhang Y C 2022 Ceram. Int. 48 7550
[12] Xu B, Kang G Z, Kan Q H, Yu C and Xie X 2020 Int. J. Mech. Sci. 168 105303
[13] Bui T Q and Hu X F 2021 Eng. Fract. Mech. 248 107705
[14] Chen L Q and Zhao Y H 2022 Prog. Mater. Sci. 124 100868
[15] Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R and Zhang S J 2019 Science 364 264
[16] Batra R, Song L and Ramprasad R 2021 Nat. Rev. Mater. 6 655
[17] Yuan R H, Xue D Q, Xu Y Y, Xue D Z and Li J S 2022 J. Alloys Compd. 908 164468
[18] Yuan R H, Xue D Z, Xue D Q, Zhou Y M, Ding X D, Sun J and Lookman T 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 394
[19] Yuan R H, Tian Y, Xue D Z, Xue D Q, Zhou Y M, Ding X D, Sun J and Lookman T 2019 Adv. Sci. 6 1901395
[20] Xu P C, Ji X B, Li M J and Lu W C 2023 npj Comput. Mater. 9 42
[21] Childs C M and Washburn N R 2019 MRS Commun. 9 806
[22] Xue T J, Gan Z T, Liao S H and Cao J 2022 npj Comput. Mater. 8 201
[23] Li C C, Xu B, Lin D B, Zhang S J, Bellaiche L, Shrout T R and Li F 2020 Phys. Rev. B 101 140102
[24] Zheng F J, Tian X, Fang Z, Lin J F, Lu Y, Gao W, Xin R, Fu D S, Qi Y, Ma Z Z, Ye W N, Qin Y L, Wang X X and Zhang Y C 2023 ACS Appl. Mater. Interfaces 15 7053
[25] Li L, Cheng J S, Cheng Y Y, Han T, Liu Y, Zhou Y, Zhao G H, Zhao Y, Xiong C X, Dong L J and Wang Q 2021 Adv. Mater. 33 2102392
[26] Shin W, Yim J, Bae J, Lee J, Hong S, Kim J, Jeong Y, Kwon D, Koo R, Jung G, Han C, Kim J, Park B, Kwon D and Lee J 2022 Mater. Horiz. 9 1623
[27] Yang L Y, Huang H B, Xi Z Z, Zheng L M, Xu S Q, Tian G, Zhai Y Z, Guo F F, Kong L P, Wang Y G, Lü W M, Yuan L, Zhao M L, Zheng H W and Liu G 2022 Nat. Commun. 13 2444
[28] Qiu C R, Wang B, Zhang N, Zhang S J, Liu J F, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q and Li F 2020 Nature 577 350
[29] Li J L, Qu W B, Daniels J, et al. 2023 Science 380 87
[30] Apicella A, Donnarumma F, Isgr‘o F and Prevete R 2021 Neural Networks 138 14
[31] Zhang X Y and Liu C A 2023 J. Econom. 235 280
[32] Bejani M M and Ghatee M 2021 Artif. Intell. Rev. 54 6391
[33] Plonsky L and Ghanbar H 2018 Mod. Lang. J. 102 713
[34] Karunasingha D S K 2022 Inf. Sci. 585 609
[35] Hodson T O 2022 Geosci. Model. Dev. 15 5481
[36] Mansournia M A, Waters R, Nazemipour M, Bland M and Altman D G 2021 Global Epidemiol. 3 100045
[37] Gerke O 2020 Diagnostics 10 334
[38] Korkmaz M Ç, Chesneau C and Korkmaz Z S 2021 Symmetry 13 117
[39] Dash S, Pradhan D K, Kumari S, Ravikant, Rahaman M M, Cazorla C, Brajesh K, Kumar A, Thomas, Rack P D and Pradhan D K 2021 Phys. Rev. B 104 224105
[1] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[2] High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127203.
[3] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[4] A novel diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2Sb2 with decoupled charge and spin dopings
Yilun Gu(顾轶伦), Haojie Zhang(张浩杰), Rufei Zhang(张茹菲), Licheng Fu(傅立承), Kai Wang(王恺), Guoxiang Zhi(智国翔), Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2020, 29(5): 057507.
[5] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[6] Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2
M A Ali, M M Uddin, M N I Khan, F U Z Chowdhury, S M Hoque, S I Liba. Chin. Phys. B, 2017, 26(7): 077501.
[7] Correlation between valence electronic structure and magnetic properties in RCo5 (R= rare earth) intermetallic compound
Zhi-Qin Xue(薛智琴), Yong-Quan Guo(郭永权). Chin. Phys. B, 2016, 25(6): 063101.
[8] Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties
Shan Jiang(姜珊), Xuan-Ming Wang(王炫明), Jia-Yu Li(李佳宇),Yong Zhang(张勇), Tao Zheng(郑涛), Jing-Wen Lv(吕景文). Chin. Phys. B, 2016, 25(3): 037701.
[9] Magnetic entropy change and magnetic properties of LaFe11.5Si1.5 after controlling the Curie temperature by partial substitution of Mn and hydrogenation
Bin Fu(傅斌) and Jie Han(韩洁). Chin. Phys. B, 2016, 25(2): 027501.
[10] Structural and magnetic properties of La0.7Sr0.1AgxMnO3-δ perovskite manganites
Hou Xue (侯雪), Ji Deng-Hui (纪登辉), Qi Wei-Hua (齐伟华), Tang Gui-De (唐贵德), Li Zhuang-Zhi (李壮志). Chin. Phys. B, 2015, 24(5): 057501.
[11] Ferromagnetism in ZnO with (Mn,Li) codoping
Ma Shi-Jia (马世甲), Lu Peng-Fei (芦鹏飞), Yu Zhong-Yuan (俞重远), Zhao Long (赵龙), Li Qiong-Yao (李琼瑶), Wu Cheng-Jie (武成洁), Ding Lu (丁路). Chin. Phys. B, 2013, 22(3): 037102.
[12] The electronic and magnetic properties of (Mn,C)-codoped ZnO diluted magnetic semiconductor
Zhao Long (赵龙), Lu Peng-Fei (芦鹏飞), Yu Zhong-Yuan (俞重远), Ma Shi-Jia (马世甲), Ding Lu (丁路), Liu Jian-Tao (刘建涛). Chin. Phys. B, 2012, 21(9): 097103.
[13] Combined effect of the transition layer and interfacial coupling on the properties of ferroelectric bilayer film
Sun Pu-Nan(孙普男), Cui Lian(崔莲), and ü Tian-Quan(吕天全). Chin. Phys. B, 2009, 18(4): 1658-664.
[14] Electronic structures and magnetic properties in SmCo7-xMx
Wang Pei-Ji(王培吉), Kao Hong(考红), Zhang Chang-Wen(张昌文), Yu Feng(于峰), and Zhou Zhong-Xiang(周忠祥). Chin. Phys. B, 2009, 18(10): 4490-4496.
[15] Hydrogen absorption of LaFe11.5Si1.5 compound under low hydrogen gas pressure
Fu Bin(傅斌), Long Yi(龙毅), Shi Pu-Ji(史普辑), Ma Tao(马涛), Bao Bo(鲍博), Yan A-Ru(闫阿儒), and Chen Ren-Jie(陈仁杰). Chin. Phys. B, 2009, 18(10): 4506-4510.
No Suggested Reading articles found!